《SEMICONDUCTOR DEVICE FUNAMENTALS》PDF下载

  • 购买积分:21 如何计算积分?
  • 作  者:
  • 出 版 社:ADDISON WESLEY LONGMAN
  • 出版年份:1996
  • ISBN:0201543931
  • 页数:792 页
图书介绍:

Part Ⅰ Semiconductor Fundamentals 1

Chapter 1 Semiconductors: A General Introduction 3

1.1 General Material Properties 3

1.1.1 Composition 3

1.1.2 Purity 5

1.1.3 Structure 6

1.2 Crystal Structure 6

1.2.1 The Unit Cell Concept 7

1.2.2 Simple 3-D Unit Cells 8

1.2.3 Semiconductor Lattices 9

1.2.4 Miller Indices 12

1.3 Crystal Growth 16

1.3.1 Obtaining Ultrapure Si 16

1.3.2 Single-Crystal Formation 17

1.4 Summary 19

Problems 19

Chapter 2 Carrier Modeling 23

2.1 The Quantization Concept 23

2.2 Semiconductor Models 25

2.2.1 Bonding Model 26

2.2.2 Energy Band Model 26

2.2.3 Carriers 29

2.2.4 Band Gap and Material Classification 31

2.3 Carrier Properties 32

2.3.1 Charge 32

2.3.2 Effective Mass 32

2.3.3 Carrier Numbers in Intrinsic Material 34

2.3.4 Manipulation of Carrier Numbers—Doping 35

2.3.5 Carrier-Related Terminology 40

2.4 State and Carrier Distributions 40

2.4.1 Density of States 41

2.4.2 The Fermi Function 42

2.4.3 Equilibrium Distribution of Carriers 46

2.5 Equilibrium Carrier Concentrations 49

2.5.1 Formulas for n and p 49

2.5.2 Alternative Expressions for n and p 52

2.5.3 ni and the np Product 53

2.5.4 Charge Neutrality Relationship 57

2.5.5 Carrier Concentration Calculations 59

2.5.6 Determination of EF 61

2.5.7 Carrier Concentration Temperature Dependence 65

2.6 Summary and Concluding Comments 67

Problems 69

Chapter 3 Carrier Action 75

3.1 Drift 75

3.1.1 Definition-Visualization 75

3.1.2 Drift Current 76

3.1.3 Mobility 79

3.1.4 Resistivity 85

3.1.5 Band Bending 89

3.2 Diffusion 94

3.2.1 Definition-Visualization 94

3.2.2 Hot-Point Probe Measurement 97

3.2.3 Diffusion and Total Currents 98

Diffusion Currents 98

Total Currents 99

3.2.4 Relating Diffusion Coeffcients/Mobilities 99

Constancy of the Fermi Level 99

Current Flow Under Equilibrium Conditions 101

Einstein Relationship 101

3.3 Recombination-Generation 105

3.3.1 Definition-Visualization 105

Band-to-Band Recombination 105

R-G Center Recombination 105

Auger Recombination 107

Generation Processes 107

3.3.2 Momentum Considerations 107

3.3.3 R-G Statistics 110

Photogeneration 110

Indirect Thermal Recombination-Generation 112

3.3.4 Minority Carrier Lifetimes 116

General Information 116

A Lifetime Measurement 116

3.4 Equations of State 120

3.4.1 Continuity Equations 121

3.4.2 Minority Carrier Diffusion Equations 122

3.4.3 Simplifications and Solutions 124

3.4.4 Problem Solving 124

Sample Problem No.1 124

Sample Problem No.2 128

3.5 Supplemental Concepts 131

3.5.1 Diffusion Lengths 131

3.5.2 Quasi-Fermi Levels 132

3.6 Summary and Concluding Comments 136

Problems 138

Chapter 4 Basics of Device Fabrication 149

4.1 Fabrication Processes 149

4.1.1 Oxidation 149

4.1.2 Diffusion 152

4.1.3 Ion Implantation 155

4.1.4 Lithography 159

4.1.5 Thin-Film Deposition 162

Evaporation 162

Sputtering 162

Chemical Vapor Deposition (CVD) 164

4.1.6 Epitaxy 164

4.2 Device Fabrication Examples 165

4.2.1 pn Junction Diode Fabrication 166

4.2.2 Computer CPU Process Flow 166

4.3 Summary 174

R1 Part Ⅰ Supplement and Review 175

Alternative/Supplemental Reading List 175

Figure Sources/Cited References 177

Review List of Terms 178

Part Ⅰ—Review Problem Sets and Answers 179

Part ⅡA pn Junction Diodes 193

Chapter 5 pn Junction Electrostatics 195

5.1 Preliminaries 195

5.1.1 Junction Terminology/Idealized Profiles 195

5.1.2 Poisson's Equation 197

5.1.3 Qualitative Solution 198

5.1.4 The Built-in Potential (Vbi) 203

5.1.5 The Depletion Approximation 206

5.2 Quantitative Electrostatic Relationships 209

5.2.1 Assumptions/Definitions 209

5.2.2 Step Junction with VA = 0 210

Solution for p 210

Solution for ? 210

Solution for V 212

Solution for xn and xp 213

5.2.3 Step Junction with VA ≠ 0 215

5.2.4 Examination/Extrapolation of Results 219

5.2.5 Linearly Graded Junctions 223

5.3 Summary 226

Problems 227

Chapter 6 pn Junction Diode: Ⅰ-V Characteristics 235

6.1 The Ideal Diode Equation 235

6.1.1 Qualitative Derivation 235

6.1.2 Quantitative Solution Strategy 241

General Considerations 241

Quasineutral Region Considerations 242

Depletion Region Considerations 243

Boundary Conditions 244

“Game Plan” Summary 246

6.1.3 Derivation Proper 247

6.1.4 Examination of Results 249

Ideal Ⅰ-V 249

The Saturation Current 250

Carrier Currents 254

Carrier Concentrations 255

6.2 Deviations from the Ideal 260

6.2.1 Ideal Theory Versus Experiment 260

6.2.2 Reverse-Bias Breakdown 263

Avalanching 264

Zener Process 268

6.2.3 The R-G Current 270

6.2.4 VA --→ Vbi High-Current Phenomena 277

Series Resistance 278

High-Level Injection 279

6.3 Special Considerations 281

6.3.1 Charge Control Approach 282

6.3.2 Narrow-Base Diode 284

Current Derivation 284

Limiting Cases/Punch-Through 286

6.4 Summary and Concluding Comments 288

Problems 289

Chapter 7 pn Junction Diode: Small-Signal Admittance 301

7.1 Introduction 301

7.2 Reverse-Bias Junction Capacitance 301

7.2.1 General Information 301

7.2.2 C-V Relationships 305

7.2.3 Parameter Extraction/Profiling 309

7.2.4 Reverse-Bias Conductance 313

7.3 Forward-Bias Diffusion Admittance 315

7.3.1 General Information 315

7.3.2 Admittance Relationships 318

7.4 Summary 323

Problems 324

Chapter 8 pn Junction Diode: Transient Response 327

8.1 Turn-Off Transient 327

8.1.1 Introduction 327

8.1.2 Qualitative Analysis 329

8.1.3 The Storage Delay Time 333

Quantitative Analysis 333

Measurement 334

8.1.4 General Information 338

8.2 Turn-On Transient 338

8.3 Summary 343

Problems 344

Chapter 9 Optoelectronic Diodes 347

9.1 Introduction 347

9.2 Photodiodes 349

9.2.1 pn Junction Photodiodes 349

9.2.2 p-i-n and Avalanche Photodiodes 352

p-i-n Photodiodes 352

Avalanche Photodiodes 355

9.3 Solar Cells 356

9.3.1 Solar Cell Basics 356

9.3.2 Efficiency Considerations 357

9.3.3 Solar Cell Technology 360

9.4 LEDs 361

9.4.1 General Overview 361

9.4.2 Commercial LEDs 362

9.4.3 LED Packaging and Photon Extraction 366

Part ⅡB BJTs and Other Junction Devices 369

Chapter 10 BJT Fundamentals 371

10.1 Terminology 371

10.2 Fabrication 374

10.3 Electrostatics 378

10.4 Introductory Operational Considerations 380

10.5 Performance Parameters 382

Emitter Ef 382

ciency 382

Base Transport Factor 383

Common Base d.c.Current Gain 383

Common Emitter d.c.Current Gain 384

10.6 Summary 385

Problems 385

Chapter 11 BJT Static Characteristics 389

11.1 Ideal Transistor Analysis 389

11.1.1 Solution Strategy 389

Basic Assumptions 389

Notation 390

Diffusion Equations/Boundary Conditions 390

Computational Relationships 392

11.1.2 General Solution (W Arbitrary) 393

Emitter/Collector Region Solutions 393

Base Region Solution 394

Performance Parameters/Terminal Currents 395

11.1.3 Simplified Relationships (W 《 LB) 397

△PB (x) in the Base 398

Performance Parameters 398

11.1.4 Ebers-Moll Equations and Model 403

11.2 Deviations from the Ideal 407

11.2.1 Ideal Theory/Experiment Comparison 407

11.2.2 Base Width Modulation 410

11.2.3 Punch-Through 412

11.2.4 Avalanche Multiplication and Breakdown 414

Common Base 414

Common Emitter 414

11.2.5 Geometrical Effects 420

Emitter Area ≠ Collector Area 420

Series Resistances 421

Current Crowding 421

11.2.6 Recombination-Generation Current 422

11.2.7 Graded Base 423

11.2.8 Figures of Merit 424

11.3 Modern BJT Structures 426

11.3.1 Polysilicon Emitter BJT 426

11.3.2 Heterojunction Bipolar Transistor (HBT) 429

11.4 Summary 432

Problems 433

Chapter 12 BJT Dynamic Response Modeling 443

12.1 Small-Signal Equivalent Circuits 443

12.1.1 Generalized Two-Port Model 443

12.1.2 Hybrid-Pi Models 446

12.2 Transient (Switching) Response 449

12.2.1 Qualitative Observations 449

12.2.2 Charge Control Relationships 452

12.2.3 Quantitative Analysis 454

Turn-on Transient 454

Turn-off Transient 456

12.2.4 Practical Considerations 457

12.3 Summary 458

Problems 459

Chapter 13 PNPN Devices 463

13.1 Silicon Controlled Rectifier (SCR) 463

13.2 SCR Operational Theory 465

13.3 Practical Turn-on/Turn-off Considerations 470

13.3.1 Circuit Operation 470

13.3.2 Additional Triggering Mechanisms 471

13.3.3 Shorted-Cathode Configuration 471

13.3.4 di/dt and dv/dt Effects 472

13.3.5 Triggering Time 473

13.3.6 Switching Advantages/Disadvantages 473

13.4 Other PNPN Devices 474

Chapter 14 MS Contacts and Schottky Diodes 477

14.1 Ideal MS Contacts 477

14.2 Schottky Diode 483

14.2.1 Electrostatics 483

Built-in Voltage 483

p,?, V 485

Depletion Width 486

14.2.2 Ⅰ-V Characteristics 487

14.2.3 a.c.Response 493

14.2.4 Transient Response 496

14.3 Practical Contact Considerations 497

14.3.1 Rectifying Contacts 497

14.3.2 Ohmic Contacts 498

14.4 Summary 500

Problems 501

R2 Part Ⅱ Supplement and Review 505

Alternative/Supplemental Reading List 505

Figure Sources/Cited References 506

Review List of Terms 507

Part Ⅱ—Review Problem Sets and Answers 508

Part Ⅲ Field Effect Devices 523

Chapter 15 Field Effect Introduction—The J-FET and MESFET 525

15.1 General Introduction 525

15.2 J-FET 530

15.2.1 Introduction 530

15.2.2 Qualitative Theory of Operation 531

15.2.3 Quantitative ID-VD Relationships 536

15.2.4 a.c.Response 547

15.3 MESFET 550

15.3.1 General Information 550

15.3.2 Short-Channel Considerations 552

Variable Mobility Model 553

Saturated Velocity Model 554

Two-Region Model 555

15.4 Summary 557

Problems 557

Chapter 16 MOS Fundamentals 563

16.1 Ideal Structure Definition 563

16.2 Electrostatics—Mostly Qualitative 565

16.2.1 Visualization Aids 565

Energy Band Diagram 565

Block Charge Diagrams 566

16.2.2 Effect of an Applied Bias 567

General Observations 567

Specific Biasing Regions 568

16.3 Electrostatics—Quantitative Formulation 571

16.3.1 Semiconductor Electrostatics 571

Preparatory Considerations 571

Delta-Depletion Solution 576

16.3.2 Gate Voltage Relationship 580

16.4 Capacitance-Voltage Characteristics 584

16.4.1 Theory and Analysis 584

Qualitative Theory 584

Delta-Depletion Analysis 590

16.4.2 Computations and Observations 591

Exact Computations 591

Practical Observations 595

16.5 Summary and Concluding Comments 599

Problems 600

Chapter 17 MOSFETs—The Essentials 611

17.1 Qualitative Theory of Operation 611

17.2 Quantitative ID -VD Relationships 617

17.2.1 Preliminary Considerations 617

Threshold Voltage 617

Effective Mobility 618

17.2.2 Square-Law Theory 620

17.2.3 Bulk-Charge Theory 625

17.2.4 Charge-Sheet and Exact-Charge Theories 628

17.3 a.c.Response 630

17.3.1 Small-Signal Equivalent Circuits 630

17.3.2 Cutoff Frequency 633

17.3.3 Small-Signal Characteristics 634

17.4 Summary 637

Problems 638

Chapter 18 Nonideal MOS 645

18.1 Metal-Semiconductor Workfunction Difference 645

18.2 Oxide Charges 650

18.2.1 General Information 650

18.2.2 Mobile Ions 653

18.2.3 The Fixed Charge 658

18.2.4 Interfacial Traps 662

18.2.5 Induced Charges 668

Radiation Effects 668

Negative-Bias Instability 669

18.2.6 △VGSummary 670

18.3 MOSFET Threshold Considerations 674

18.3.1 VT Relationships 675

18.3.2 Threshold, Terminology, and Technology 676

18.3.3 Threshold Adjustment 678

18.3.4 Back Biasing 680

18.3.5 Threshold Summary 681

Problems 684

Chapter 19 Modern FET Structures 691

19.1 Small Dimension Effects 691

19.1.1 Introduction 691

19.1.2 Threshold Voltage Modification 694

Short Channel 694

Narrow Width 697

19.1.3 Parasitic BJT Action 698

19.1.4 Hot-Carrier Effects 700

Oxide Charging 700

Velocity Saturation 700

Velocity Overshoot/Ballistic Transport 701

19.2 Select Structure Survey 702

19.2.1 MOSFET Structures 702

LDD Transistors 702

DMOS 703

Buried-Channel MOSFET 704

SiGe Devices 704

SOI Structures 705

19.2.2 MODFET (HEMT) 707

Problems 710

R3 Part Ⅲ Supplement and Review 713

Alternative/Supplemental Reading List 713

Figure Sources/Cited References 714

Review List of Terms 717

Part Ⅲ—Review Problem Sets and Answers 718

Appendices 733

Appendix A Elements of Quantum Mechanics 733

A.1 The Quantization Concept 733

A.1.1 Blackbody Radiation 733

A.1.2 The Bohr Atom 735

A.1.3 Wave-Particle Duality 737

A.2 Basic Formalism 739

A.3 Electronic States in Atoms 741

A.3.1 The Hydrogen Atom 741

A.3.2 Multi-Electron Atoms 744

Appendix B MOS Semiconductor Electrostatics—Exact Solution 749

Definition of Parameters 749

Exact Solution 750

Appendix C MOS C-V Supplement 753

Appendix D MOS I-V Supplement 755

Appendix E List of Symbols 757

Appendix M MATLAB Program Script 771

Exercise 10.2 (BJT_Eband) 771

Exercise 11.7 (BJT) and Exercise 11.10 (BJTplus) 774

Exercise 16.5 (MOS_CV) 778

Index 781