《Continuous Dynamical Systems=连续动力系统 英文版》PDF下载

  • 购买积分:11 如何计算积分?
  • 作  者:罗朝俊著
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2012
  • ISBN:9787040348194
  • 页数:286 页
图书介绍:本书极具创新特色,首次揭示了混沌不只是可以通过数字模拟实现而且可以用解析形式来表示。书中提出了关于连续动力系统的稳定性和分叉理论的一种新的、清晰简明的观点,能够帮助读者更好地理解动力系统中规则性和复杂性。本书首先介绍了含多重特征根的线性连续系统的解析解和稳定性理论,并详细讨论了非线性连续动力系统的稳定性和奇异性分类,然后系统地讨论动力系统从周期解到混沌的解析道路。此外本书还讨论了动力系统流对于同宿或异宿轨道分界面的全局横截性的解析预测并且给出了非线性哈密顿系统混沌的解析判据,从而能更好地确定混沌在非线性动力系统中的物理机理。本书可作为应用数学、物理、力学和控制专业大学生教材或参考书,也可供该领域的教授和研究人员参考。 作者罗朝俊,非线性动力系统和力学领域国际知名专家,美国南伊利诺伊大学爱德华分校终身教授,主要研究领域为非线性哈密顿系统混沌、非线性力学和不连续动力系统。

Chapter 1 Linear Systems and Stability 1

1.1 Linear systems with distinct eigenvalues 1

1.2 Operator exponentials 7

1.3 Linear systems with repeated eigenvalues 8

1.4 Nonhomogeneous linear systems 18

1.5 Linear systems with periodic coefficients 21

1.6 Stability and boundary 22

1.7 Lower-dimensional linear systems 33

1.7.1 One-dimensional linear systems 33

1.7.2 Planar linear systems 35

1.7.3 Three-dimensional linear systems 41

References 53

Chapter 2 Stability Switching and Bifurcation 55

2.1 Continuous dynamical systems 55

2.2 Equilibriums and stability 58

2.3 Bifurcation and stability switching 70

2.3.1 Stability and switching 76

2.3.2 Bifurcations 95

2.3.3 Lyapunov functions and stability 106

References 106

Chapter 3 Analytical Periodic Flows and Chaos 109

3.1 Analytical periodic flows 109

3.1.1 Autonomous nonlinear systems 109

3.1.2 Periodically forced nonlinear systems 117

3.2 Nonlinear vibration systems 121

3.2.1 Free vibration systems 121

3.2.2 Periodically forced vibration systems 131

3.3 A periodically forced Duffing oscillator 135

References 165

Chapter 4 Global Transversality and Chaos 167

4.1 Nonlinear dynamical systems 167

4.2 Local and global flows 171

4.3 Global transversality 176

4.4 Global tangency 184

4.5 Perturbed Hamiltonian systems 192

4.6 Two-dimensional Hamiltonian systems 196

4.7 First integral quantity increment 201

4.8 A damped Duffing oscillator 204

4.8.1 Conditions for global transversality and tangency 206

4.8.2 Poincare mapping and mapping structures 211

4.8.3 Bifurcation scenario 217

4.8.4 Numerical illustrations 223

References 236

Chapter 5 Resonance and Hamiltonian Chaos 237

5.1 Stochastic layers 237

5.1.1 Definitions 237

5.1.2 Approximate criteria 241

5.2 Resonant separatrix layers 250

5.2.1 Layer dynamics 252

5.2.2 Approximate criteria 257

5.3 A periodically forced Duffing oscillator 262

5.3.1 Approximate predictions 262

5.3.2 Numerical illustrations 269

5.4 Concluding remarks 282

References 283

Index 285