《连续与离散控制系统 英文版》PDF下载

  • 购买积分:20 如何计算积分?
  • 作  者:(美)John Dorsey著
  • 出 版 社:北京:电子工业出版社
  • 出版年份:2002
  • ISBN:7505377736
  • 页数:727 页
图书介绍:

Chapter 1 Preliminaries 1

1.1 Why Control? 1

1.2 Feedback 4

1.3 The Scope ofthe Book 6

1.4 Problems 8

Further Readings 9

Chapter 2 The Laplace Transform 10

2.1 Overview 10

2.2 Laplace Transform 11

2.3 Fundamental Transforms 12

2.3.1 The Exponential Function 12

2.3.2 TheStepFunction 14

2.3.3 The Impulse Function 15

2.4 Properties of the Laplace Transform 16

2.4.1 Linearity 17

2.4.2 Laplace Transforms of Derivatives of a Function 17

2.4.3 Laplace Transform of the Integral of a Function 19

2.4.4 Laplace Transform of tf(t) 20

2.5 The Inverse Laplace Transform 21

2.6 The Remaining Transforms 25

2.6.1 Transform of te-at 25

2.6.2 Complex Roots 25

2.7 Additional Properties 30

2.7.1 Final ValueTheorem 30

2.7.2 Initial Value Theorem 31

2.7.3 Time Delay 31

2.7.4 Convolution 32

2.8 Reprise 34

2.9 Problems 34

Further Readings 38

Chapter 3 The Transfer Function 39

3.1 Overview 39

3.2 TheTransferFunction 40

3.3 Transfer Function of the dc Motor 45

3.4 Transfer Function of a Brushless dc Motor 48

3.5.3 Step Response of Simple Second-Order System 50

3.5.2 Simplified Transfer Function 50

3.5 Finding Transfer Functions Experimentally 50

3.5.1 Introduction 50

3.6 Implementing Transfer Functions 57

3.6.1 Passive Implementations 57

3.6.2 Operational Amplifiers 59

3.6.3 Implementing Transfer Functions with Opamps 62

3.7 Reprise 70

3.8 Problems 70

Further Readings 75

4.1 Overview 76

Chapter 4 Introducing Feedback 76

4.2 Basic Formulation 77

4.3 Routh Criterion 82

4.4 Transient Behavior and Steady State Error 88

4.5 Reprise 91

4.6 Problems 91

Further Readings 96

5.2 Exchanging Algebra for Geometry 97

Chapter 5 Root Locus Analysis 97

5.1 Overview 97

5.2.1 Polar Formulation 98

5.2.2 Graphical Representation 99

5.3 Rules of Root Locus 105

5.4 More Examples 119

5.5 Negative Gain(Complementary)Root Locus 127

5.6 Polynomial Factorization 129

5.7 Reprise 131

5.8 Problems 133

Further Readings 136

Chapter 6 Quantifying Performance 137

6.1 Overview 137

6.2 Normalized Second-Order System 138

6.3 Step Response of Tu2 140

6.4 Figures of Merit 143

6.4.2 Time to Peaktp 144

6.4.3 Percent Overshoot 144

6.4.1 Period of Oscillation Td 144

6.4.4 Settling Time 146

6.4.5 Rise Time 146

6.5 Figures of Merit—A Discussion 147

6.6 Steady State Accuracy 150

6.6.1 Closed-Loop Fornulation 150

6.6.2 Unity Feedback Formulation 152

6.7 Reprise 157

6.8 Problems 158

Further Readings 163

Chapter 7 Cascade Root Locus Design 164

7.1 Overview 164

7.2 Proportional Plus Derivative Compensation 165

7.3 Cascade Lead Compensation 170

7.4 Proportional Plus Integral Compensation 181

7.5 Lag Compensation 186

7.6 PID and Lead/Lag Compensation 187

7.7 Robust Stability 192

7.8 Reprise 197

7.9 Problems 198

Further Readings 211

Chapter 8 Motor Speed Control:A Case Study 212

8.1 Overview 212

8.2 A New Identification Procedure 213

8.3.1 Data Measurement 223

8.3.2 Transfer Function without Cylinder Attached 223

8.3 Identification of dc Motor without Cylinder 223

8.3.3 TransferFunctionwith Cylinder Attached 227

8.4 Compensator Design and Implementation 233

8.5 Integral Control 233

8.6 PI Control 237

8.7 Reprise 238

8.8 Problems 239

Further Readings 241

9.1 Overview 242

9.2 Steady State Response to Sinusoidal Inputs 242

Chapter 9 Frequency Response 242

9.3 Bode P1ots 245

9.3.1 Time Constant Form of G(s) 245

9.3.2 SimplePole 247

9.3.3 Simple Zero 249

9.3.4 Qualitative Vector Analysis 249

9.3.5 Composite Asymptotic Magnitude Plots 249

9.3.6 Bode Plot of Repeated Poles 254

9.3.7 Phase and Magnitude Plots of Complex Poles 256

9.4 Transfer Function Identification 261

9.5 The Effects of Feedback 265

9.5.1 The Effect of Feedback on Bandwidth 266

9.6 Sensitivity Analysis 267

9.7 Disturbance Rejection 270

9.7.1 Disturbances at the Output 270

9.8 Disturbance at the Input 278

9.9 Reprise 279

9.10 Problems 279

Further Readings 284

Chapter 10 Nyquist Criterion 285

10.1 Overview 285

10.2 The Nyquist Equation 286

10.3 The Nyquist Criterion 288

10.4 Evaluation of GH Along Ω 290

10.4.1 NoPoles on the lmaginary Axis 290

10.4.2 Poles on the Imaginary Axis 298

10.5 Gain Margin and Phase Margin 310

10.6 The Log Magnitude Plot 312

10.6.1 ConstantMLoci 313

10.6.2 Loci of Constant Phase 315

10.6.3 The Nichols Chart 316

10.7 Reprise 318

10.8 Problems 319

Further Readings 325

Chapter 11 Bode Design 326

11.1 Overview 326

11.2 Figures of Merit 326

11.3 Lag Compensator Design 331

11.4 Lead Compensator Design 337

11.5 Lead/Lag Design Procedure 344

11.6 General Design Procedure 345

11.7 Closed-Loop Analysis 360

11.8 Reprise 362

11.9 Problems 363

Further Readings 380

Chapter 12 Robust Control 381

12.1 Overview 381

12.2 Norms Without Tears 382

12.3 Norms for Robust Control 385

12.3.1 Overview 385

12.4 Sensitivity Functions 386

12.5 Robust Stability Margins 388

12.6 Disturbance Rejection 389

12.7 Noise Rejection 392

12.8 Unmodeled Plant Dynamics and Noise Suppression 394

12.9 Combining Uncertainties 395

12.10 Connections to the Past 398

12.11 Reprise 403

12.12 Problems 403

Further Readings 412

Chapter 13 Position Control:A Case Study 413

13.1 Overview 413

13.2 Model Identification 415

13.2.1 Frequency Analysis Identification 415

13.2.2 Ideal Impulse Identification 417

13.2.3 Finite Width Pulse Identiffcation 418

13.3 Pulse Identification of a Transfer Function 421

13.3.1 Turntable DataAnalysis 421

13.3.2 Finding the Third Pole 424

13.4 Lead Compensation 434

13.5 Reprise 436

13.6 Problems 437

Further Readings 438

Chapter 14 Discrete Systems 439

14.1 Overview 439

14.2 The Ideal Sampler 440

14.3 The Laplace Transform of x*(t) 441

14.4 The ? Transform ofx(t) 442

14.5 ? Transforms Useful in Control 443

14.5.1 The Discrete Delta Function 444

14.5.2 The Discrete Step Function 444

14.5.3 Discrete Form of e-at 445

14.5.4 DiscreteForm of x(t)=tl(t) 446

14.5.5 Discrete Fom of x(t)=A cos(ωt+φ) 446

14.6 Altemative Representation 447

14.7 Important Theorems 448

14.7.1 Linearity 449

14.7.2 Right Shifting Property 449

14.7.3 Left Shifting Property 450

14.7.4 Final Value Theorem 451

14.8 Transfer Function in the z Domain 451

14.9 The Inverse ? Transform 452

14.10 The Solution of Difference Equations 456

14.11 Convolution versus Multiplication 458

14.12 Frequency Response 459

14.13 The Mapping esT 461

14.14 The Primary StriP 462

14.15 The Starring Rule 466

14.16 Sampled Data Systems 467

14.17 Finding G′p(z) 470

14.18 Nyquist in the ? Plane 473

14.19 Reprise 476

14.20 Problems 477

Further Readings 481

Chapter 15 Digital Control 482

15.1 Overview 482

15.2 Important Mappings 482

15.2.1 Lines of Constant Damping Ratio 483

15.2.2 Curves of Constantωn 484

15.2.3 The Bilinear Mapping 487

15.2.4 The Ad Hoc(Pole/Zero)Mapping 490

15.3 Designinthe s Plane 491

15.3.1 Root Locus Design 492

15.3.2 Bode Design 497

15.4 Design in the z Plane 504

15.4.1 Direct Design 504

15.4.2 Root Locus Design in the z Plane 513

15.5 Reprise 519

15.6 Problems 519

Chapter 16 Aircraft Pitch Control:A Case Study 531

16.1 Overview 531

16.2 Plant Modeling and Identification 532

16.2.1 Plant Parameter Identification 534

16.2.2 Data Collection 536

16.2.3 Analyzing the Data 538

16.3 Control Design 540

16.3.1 TransferringPlanttothe z Plane 540

16.4 Laboratory Setup 542

16.5 Reprise 546

16.6 Problems 546

Further Readings 547

Chapter 17 The Transportation Lag 548

17.1 Overview 548

17.2 Transportation Lag in a Continuous System 549

17.3 Approximations to the Transportation Lag 554

17.4 Compensator Design for Continuous Systems 555

17.4.1 Root Locus Design 555

17.5 Sampled Data Systems 565

17.5.1 Bode s Plane Design 565

17.5.2 Design in the z Plane 568

17.6 Reprise 573

17.7 Problems 574

Further Readings 583

Chapter 18 The State Model 584

18.1 Overview 584

18.2 Relation to the Transfer Function 585

18.3 The Transition Matrix 586

18.4 Phase Portraits 590

18.4.1 Real Distinct Roots 591

18.4.2 Isoclines 596

18.4.3 Complex Eigenvalues 602

18.4.4 Repeated Real Roots 609

18.5 State Models of Higher Dimension 612

18.5.1 Distinct Roots 613

18.5.2 Repeated Eigenvalues 616

18.6 The Jordan Canonical Form 623

18.7 Invariance of Eigenvalues 630

18.8 Reprise 631

18.9 Problems 632

Further Readings 637

Chapter 19 Observability and Controllability 638

19.1 Overview 638

19.2 Discretizing the State Model 639

19.3 Equivalent Transfer Function 644

19.4 The Regulator Problem 647

19.5 Controllability 652

19.5.1 Definitions 652

19.5.2 Controllability Theorems 653

19.6 Controllable Canonical Form 657

19.7 Observability 666

19.8 Observable Canonical Form 671

19.9 Reprise 672

19.10 Problems 673

Further Readings 680

20.1 Introduction 682

20.2 Prediction Observer 682

Chapter 20 The Control ler/Observer 682

20.3 Separation Theorem 690

20.4 Current Observer 691

20.5 Equivalent Transfer Function 696

20.6 Reference Input 697

20.7 Equivalent Tc(z) 698

20.7.1 Model Following Control 708

20.8 Reprise 714

20.9 Problems 714

Index 721