第1章 离散随机信号 1
1.1随机变量及统计特性 1
1.2正交投影原理 7
1.3离散随机信号 10
1.4随机序列经过线性滤波器 17
1.5最小相位滤波器 19
1.6信号模型 21
1.7随机变量的参数估计 24
第2章 Wiener滤波 28
2.1信号的滤波 28
2.2 Wiener-Hoff方程 30
2.3平稳序列的Wiener滤波 33
2.4平稳序列的Wiener预测 37
2.5 Levinson-Durbin算法 42
2.6格型滤波器 46
2.7 Burg算法 52
2.8功率谱估计 53
第3章 Kalman滤波 59
3.1状态与观测方程 59
3.2 Kalman滤波 60
3.3有色噪声模型的Kalman滤波 68
第4章 自适应滤波 73
4.1 FIR Weiner滤波器 73
4.2 LMS自适应算法 74
4.3步长因子μ的取值范围 78
4.4学习曲线 79
4.5失调 81
4.6 RLS自适应滤波 84
4.7自适应噪声抵消 87
4.8自适应信道均衡器 91
第5章 小波滤波 93
5.1连续小波变换 93
5.2二进小波变换 97
5.3离散二进小波变换 99
5.4 Daubechies小波 110
5.5双正交小波变换 113
5.6信号的最大模重建 119
5.7利用最大模重建滤除噪声 121
5.8软门限去噪 125
第6章 同态滤波 128
6.1同态滤波的定义 128
6.2解相乘同态系统 129
6.3解卷积同态系统 131
6.4复时谱的计算 133
6.5指数序列的复时谱 136
第7章 中值滤波 143
7.1中值滤波的定义 143
7.2中值滤波的门限分解算法 146
7.3中值滤波的输出统计特性 148
7.4多级中值滤波 152
7.5序统计滤波 156
7.6近均值滤波 159
7.7 Lee滤波 161
7.8梯度倒数加权滤波 165
第8章 形态滤波 168
8.1形态学的基本运算和性质 168
8.2 Matheron表示定理 175
8.3一维信号的形态滤波 177
8.4一维形态滤波的输出统计特性 179
参考文献 185