《商务决策的数量方法 英文版 第4版》PDF下载

  • 购买积分:19 如何计算积分?
  • 作  者:(美)琼·科温(JonCurwin),(美)罗杰·斯莱特(RogerSlater)著
  • 出 版 社:沈阳:东北财经大学出版社
  • 出版年份:1998
  • ISBN:7810441477
  • 页数:667 页
图书介绍:

Chapter 0 A refresher in basic mathematics 1

1 Self-check tests 2

2 Basic arithmetic 10

3 Use of powers 14

4 Basic algebra 16

5 Graphs and more algebra 18

6 Use of calculators 25

7 Answers to recheck tests 30

Part 1 Quantitatlv? Information 37

Chapter 1 Data collection 43

1.1 Population 44

1.2 Sources of data 46

1.3 Secondary data 46

1.4 Primary data collection 48

1.5 Asking questions 54

1.6 Non-response to surveys 61

1.7 Some alternative methods 62

1.8 Market research 63

1.9 Types of data 64

1.10 Conclusions 65

1.11 Problems 67

Chapter 2 Presentation of data 70

2.1 Tabulation of data 71

2.2 Visual presentation 75

2.3 Graphical representation 85

2.4 Conclusions 91

2.5 Problems 91

Part 1 Conclusions 97

Part 2 Descriptive statisties 99

3.1 The mean,median and mode 101

Chapter 3 Measures of location 101

3.2 Other measures of location 112

3.3 Conclusions 115

3.4 Problems 116

Chapter 4 Measures of dispersion 120

4.1 The standard devlation 120

4.2 Other measures of dispersion 126

4.3 Relative measures of dispersion 130

4.4 Variability in sample data 131

4.5 Conclusions 134

4.6 Problems 134

4.7 Appendix 139

Chapter 5 Index numbers 140

5.1 The interpretation of an index number 140

5.2 The construction of index numbers 146

5.3 The weighting of index numbers 151

5.4 The General Index of Retail Prices 153

5.5 Conclusions 155

5.6 Problems 156

Part 2 Conclusions 160

Part 3 Measuring uncertainty 161

Chapter 6 Probability 163

6.1 Basic concepts 164

6.2 Definitions 166

6.3 Basic relationships in probability 168

6.4 Probability trees 172

6.5 Expected values 173

6.6 Decision trees 175

6.7 Bayes Theorem 176

6.8 Markov Chains 178

6.9 Conclusions 181

6.10 Problems 182

Chapter 7 Discrete probability distributions 189

7.1 Uniform distribution 190

7.2 Binomial distribution 191

7.3 Poisson distribution 197

7.4 Poisson approximation to the Binomial 199

7.5 Conclusions 199

7.6 Problems 200

Chapter 8 The Normal distribution 203

8.1 Characteristics of the Normal distribution 203

8.2 The standard Normal distribution 204

8.3 Normal approximation to the Binomial 208

8.4 Normal approximation to the Poisson 210

8.5 Combinations of varlables 211

8.6 Central Limit Theorem 213

8.7 Conclusions 217

8.8 Problems 217

Part 3 Conclusions 221

Part 4 Statistical inference 223

Chapter 9 Confidence intervals 227

9.1 Statistical inference 228

9.2 Inference on the population mean 229

9.3 Inference on the population percentage 237

9.4 The difference between independent samples 240

9.5 The finite population correction factor 243

9.6 The t-distribution 245

9.7 Confidence interval for the median-large sample approximation 249

9.9 Problems 251

9.8 Conclusions 251

Chapter 10 Significance testing 257

10.1 Significance testing using confidence intervals 258

10.2 Hypothesis testing for single samples 259

10.3 One-sided significance tests 265

10.4 Types of error 270

10.5 Hypothesis testing with two samples 273

10.6 Hypothesis testing with small samples 276

10.7 Conclusions 281

10.8 Problems 282

Chapter 11 Non-parametric tests 286

11.1 Chi-squared tests 287

11.2 Mann-Whitney U test 301

11.3 Wilcoxon test 304

11.4 Runs test 307

11.5 Conclusions 308

11.6 Problems 309

Part 4 Conclusions 316

Part 5 Relating variables and predicting outcomes 317

Chapter 12 Time series 319

12.1 Time series models 321

12.2 The trend 324

12.3 The seasonal factors 333

12.4 The cyclical factors 338

12.5 The residual or random factor 339

12.6 Predictions 340

12.7 Exponentially weighted moving averages 343

12.8 Summary and conclusions 345

12.9 Problems 347

Chapter 13 Correlation 352

13.1 Scatter diagrams 353

13.2 Cause and effect relationships 355

13.3 Measuring linear association 358

13.4 The coefficient of determination 362

13.5 Measuring non-linear association 364

13.6 Testing the significance of the correlation 367

13.7 Conclusions 370

13.8 Problems 370

13.9 Derivation of the correlation coefficient 376

13.10 Algebraic link between Spearman s and Pearson s coefficients 376

Chapter 14 Regression 378

14.1 Linear regression 379

14.2 The graph of the regression line 381

14.3 Predictions from the regression line 382

14.4 Another regression line 387

14.5 Interpretation 388

14.6 Non-linear relationships 389

14.7 Conclusions 390

14.8 Problems 390

14.9 Appendix 394

Chapter 15 Multiple regression and correlation 397

15.1 The basic two-variable model 398

15.2 The effects of adding variables 401

15.3 Assumptions and econometric problems 404

15.4 Analysis of a multiple regression model 409

15.5 Using multiple regression models 413

15.6 Conclusions 414

15.7 Problems 414

Part 5 Conclusions 420

Part 6 Modelling 423

Chapter 16 The time value of money 425

16.1 Interest:simple and compound 426

16.2 Depreciation 429

16.3 Present value 431

16.4 The internal rate of return 434

16.5 Incremental payments 438

16.6 Annual percentage rate(APR) 441

16.7 Conclusions 442

16.8 Problems 444

16.9 Appendix 446

Chapter 17 Linear programming 448

17.1 Definition of a feasible area 449

17.2 The solution of a linear programming problem 450

17.3 Special cases 456

17.4 The value of resources 459

17.5 Computer-based solutions 461

17.7 Problems 467

17.6 Conclusions 467

Chapter 18 Networks 473

18.1 Notation and construction 474

18.2 The critical path 477

18.3 Measures of float 479

18.4 Gantt charts and managing resources 481

18.5 Project time reduction 482

18.6 Uncertainty 486

18.7 Conclusions 487

18.8 Problems 487

Chapter 19 Modelling stock control and queues 493

19.1 Introduction to the economic order quantity model 493

19.2 Quantity discounts 498

19.3 Non-zero lead time 499

19.4 Introduction to modelling queues 502

19.5 A model for a single queue 503

19.6 Queues - modelling cost 505

19.7 Modelling multi-channel queues 507

19.8 Conclusions 509

19.9 Problems 510

19.10 Appendix - proof of EBQ 511

Chapter 20 Simulation 513

20.1 An introduction to simulation models 514

20.2 Developing a simple simulation model 515

20.3 Random event generation 516

20.4 The construction of a simulation model 520

20.5 Conclusions 521

20.6 Problems 521

Part 6 Conclusions 523

Part 7 Mathematical background 525

Chapter 21 Mathematical relationships 527

21.1 Introduction to algebra 528

21.2 Powers 531

21.3 Arithmetic and geometric progressions 532

21.4 Functions 536

21.5 Conclusions 551

21.6 Problems 551

21.7 Proof of AP 554

21.8 Proof of GP 554

21.9 Proof of quadratic formula 555

Chapter 22 Matrices 556

22.1 What is a matrix? 557

22.2 Matrix manipulation 557

22.3 Solutions of simultaneous equations 566

22.4 Leontief input-output analysis 570

22.5 Conclusions 573

22.6 Problems 574

Chapter 23 Use of calculus 577

23.1 Differentiation 577

23.2 Economic applicationsⅠ 584

23.3 Turning points 587

23.4 Economic applicationsⅡ 590

23.5 Further notes 591

23.6 Integration 594

23.7 Economic summary 597

23.8 Functions of more than one variable 597

23.9 Maximization and minimization subject to constraints 601

23.10 Conclusions 603

23.11 Problems 604

Part 7 Conclusions 609

Typical examination questions 611

Appendices 618

A Cumulative Binomial probabilities 618

B Cumulative Poisson probabilities 619

C Areas in the right-hand tail of the Normal distribution 620

D Student s t critical points 622

E χ2 critical values 624

F Present value factors 626

G Mann-Whitney test statistic 628

H Wilcoxon test statistic 631

I Runs test 632

J Durbin-Watson statistic 634

K Random number table 636

L Loading MICROSTATS 638

Answers to selected problems 640

Index 661