《微积分与数学模型 下》PDF下载

  • 购买积分:14 如何计算积分?
  • 作  者:贾晓峰主编
  • 出 版 社:高等教育出版社;施普林格出版社
  • 出版年份:1999
  • ISBN:7040076004
  • 页数:437 页
图书介绍:

第八章 空间解析几何与向量代数 1

第一节 空间直角坐标系 1

习题8.1 4

第二节 向量及其加减法·向量与数的乘法 5

习题8.2 10

第三节 向量的坐标 10

习题题8.3 13

第四节 向量的数量积和方向余弦 14

习题8.4 21

第五节 向量积·混合积 21

习题8.5 26

第六节 平面及其方程 27

习题8.6 35

第七节 空间直线及其方程 35

习题8.7 43

第八节 曲面及其方程 44

习题8.8 48

第九节 空间曲线及其方程 49

习题8.9 54

第十节 二次曲面 54

习题8.10 63

第一节 多元函数概念 65

第九章 多元函数微分法及其应用 65

习题9.1 75

第二节 偏导数 76

习题9.2 82

第三节 全微分 83

习题9.3 91

第四节 多元复合函数的求导法则及泰勒公式 92

习题9.4 105

第五节 隐函数求导法 106

习题9.5 114

第六节 微分法的几何应用 115

第七节 方向导数与梯度 122

习题9.6 122

习题9.7 131

第八节 多元函数极值及其应用 131

习题9.8 144

第九节 最小二乘法 144

习题9.9 152

第十章 微分方程 154

第一节 微分方程的基本概念 154

习题10.1 159

第二节 斜率场及微分方程数值解 159

习题10.2 167

第三节 容易积分的一阶微分方程 168

习题10.3(1) 173

习题10.3(2) 179

习题10.3(3) 186

第四节 微分方程的幂级数解法 186

习题10.4 190

第五节 可降阶的高阶微分方程 191

习题10.5 197

第六节 二阶常系数线性微分方程 197

习题10.6 219

第七节 常系数线性微分方程组 220

习题10.7 224

第八节 微分方程应用模型 225

习题10.8 253

第十一章 各种类型的积分及其应用(二重积分、三重积分、 256

第一类曲线积分、第一类曲面积分) 256

第一节 各类积分的定义 256

习题11.1 261

第二节 各类积分的性质 261

习题11.2 264

第三节 二重积分的计算 264

习题11.3(1) 275

习题11.3(2) 282

第四节 三重积分的计算 292

习题11.3(3) 292

习题11.4 309

第五节 第一类(对弧长的)曲线积分的计算 310

习题11.5 313

第六节 第一类(对面积的)曲面积分的计算 314

习题11.6 320

第七节 各类积分的应用 321

习题11.7 337

第十二章 第二类曲线与曲面积分 338

第一节 第二类曲线积分 338

习题12.1 348

第二节 格林公式及其应用 349

习题12.2 364

第三节 第二类曲面积分 365

习题12.3 375

第四节 高斯公式·通量与散度 376

习题12.4 385

第五节 斯托克斯公式·环流量与旋度 385

习题12.5 392

附录科学论文初步知识 393

习题答案与提示 414

参考书目 436