《计算机理论基础 影印版》PDF下载

  • 购买积分:13 如何计算积分?
  • 作  者:Harry R.Lewis,Christos H.Papadimitriou
  • 出 版 社:北京:清华大学出版社
  • 出版年份:1999
  • ISBN:7302036233
  • 页数:361 页
图书介绍:内容简介随着计算机科学曰趋成熟并走向规范化,作为其甚础的计算理论的重要性也更加突出。作者根据本书第一版出版后使用中教师和学生的反馈意见和想法以及计算机科学的最新发展进行了修订。本书既讲述了经典的计算理论,又介绍了现代计算理论。全书共7章:1集、关系与语言,2有限自动机,3上下文无关文法语言,4.图灵机,5不可决定性,6计算复杂性,7.NP完全问题。本书适合于计算机系作本科生教材,也是一本难得的有关计算理论的参考书。

Introduction 1

1 Sets,Relations,and Languages 5

1.1 Sets 5

1.2 Relations and functions 9

1.3 Special types of binary relations 13

1.4 Finite and infinite sets 20

1.5 Three fundamental proof techniques 23

1.6 Closures and algorithms 30

1.7 Alphabets and languages 42

1.8 Finite representations of languages 47

References 52

2 Finite Automata 55

2.1 Deterministic finite automata 55

2.2 Nondeterministic finite automata 63

2.3 Finite automata and regular expressions 75

2.4 Languages that are and are not regular 86

2.5 State minimization 92

2.6 Algorithmic aspects of finite automata 102

References 110

3 Context-free Languages 113

3.1 Context-free grammars 113

3.2 Parse trees 122

3.3 Pushdown automata 130

3.4 Pushdown automata and context-free grammars 136

3.5 Languages that are and are not context-free 143

3.6 Algorithms for context-free grammars 150

3.7 Determinism and parsing 158

References 175

4.1 The definition of a Turing machine 179

4 Turing machines 179

4.2 Computing with Turing machines 194

4.3 Extensions of Turing machines 200

4.4 Random access Turing machines 210

4.5 Nondeterministic Turing machines 221

4.6 Grammars 227

4.7 Numerical functions 233

References 243

5 Undecidability 245

5.1 The Church-Turing thesis 245

5.2 Universal Turing machines 247

5.3 The halting problem 251

5.4 Unsolvable problems about Turing machines 254

5.5 Unsolvable problems about grammars 258

5.6 An unsolvable tiling problem 262

5.7 Properties of recursive languages 267

References 272

6 Computational Complexity 275

6.1 The class P 275

6.2 Problems,problems... 278

6.3 Boolean satisfiability 288

6.4 The class NP 292

References 299

7 NP-completeness 301

7.1 Polynomial-time reductions 301

7.2 Cook's Theorem 309

7.3 More NP-complete problems 317

7.4 Coping with NP-completeness 333

References 350

Index 353