《线性泛函分析》PDF下载

  • 购买积分:11 如何计算积分?
  • 作  者:瑞利(Rynne,P.),杨森(Youngson,M.A.)著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2005
  • ISBN:7302121397
  • 页数:273 页
图书介绍:本书以较小的篇幅,介绍了线性泛函分析的基本内容,赋范空间和Banach空间,内积空间和Hilbert空间,线性算子,紧算子及其在积分方程和微分方程中的应用。本书适合大学三四年级学生以及研究生自学或作为教材使用。

1.Preliminaries 1

1.1 Linear Algebra 2

1.2 Metric Spaces 11

1.3 Lebesgue Integration 20

2.Normed Spaces 31

2.1 Examples of Normed Spaces 31

2.2 Finite-dimensional Normed Spaces 39

2.3 Banach Spaces 45

3.Inner Product Spaces,Hilbert Spaces 51

3.1 Inner Products 51

3.2 Orthogonality 60

3.3 Orthogonal Complements 65

3.4 Orthonormal Bases in Infinite Dimensions 72

3.5 Fourier Series 82

4.Linear Operators 87

4.1 Continuous Linear Transformations 87

4.2 The Norm of a Bounded Linear Operator 96

4.3 The Space B(X,Y)and Dual Spaces 104

4.4 Inverses of Operators 111

5.Linear Operators on Hilbert Spaces 123

5.1 The Adjoint of an Operator 123

5.2 Normal,Self-adjoint and Unitary Operators 132

5.3 The Spectrum of an Operator 139

5.4 Positive Operators and Projections 148

6.Compact Operators 161

6.1 Compact Operators 161

6.2 Spectral Theory of Compact Operators 172

6.3 Self-adjoint Compact Operators 182

7.Integral and Differential Equations 191

7.1 Fredholm Integral Equations 191

7.2 Volterra Integral Equations 201

7.3 Differential Equations 203

7.4 Eigenvalue Problems and Green's Functions 208

8.Solutions to Exercises 221

Further Reading 265

References 267

Notation Index 269

Index 271