《微积分》PDF下载

  • 购买积分:12 如何计算积分?
  • 作  者:柳学坤主编;郭战伟,石金诚副主编;雷彩明,赵英颖,王小艳,侯春娟,陈雪姣,李远飞,王彦平,张燕,郭连红,欧阳柏平,洪绍勇参编
  • 出 版 社:北京:机械工业出版社
  • 出版年份:2014
  • ISBN:9787111473916
  • 页数:342 页
图书介绍:本书是高等学校微积分课程教材。主要内容有函数极限与连续、导数与微分、中值定理与导数的应用、不定积分、定积分及其应用、多元函数微分学、二重积分、无穷级数、微分方程和差分方程。本书可作为课程教材使用,也可供相关科研人员参考。

第1章 函数 1

1.1 集合 1

1.1.1 集合的概念 1

1.1.2 集合的运算 2

1.1.3 绝对值 3

1.1.4 区间与邻域 3

习题1.1 5

1.2 函数 5

1.2.1 函数的概念 5

1.2.2 函数的表示法 6

1.2.3 函数的定义域 6

习题1.2 8

1.3 函数的性质 9

1.3.1 单调性 9

1.3.2 有界性 9

1.3.3 奇偶性 10

1.3.4 周期性 10

习题1.3 11

1.4 反函数 11

习题1.4 12

1.5 基本初等函数 复合函数 初等函数 12

1.5.1 基本初等函数 12

1.5.2 复合函数 17

1.5.3 初等函数 17

习题1.5 18

1.6 经济学中几个常用函数 18

1.6.1 需求函数 19

1.6.2 供给函数 19

1.6.3 均衡价格 20

1.6.4 总成本函数 21

1.6.5 总收益函数 22

1.6.6 总利润函数 22

1.6.7 消费函数与储蓄函数 23

习题1.6 23

总习题1 24

第2章 极限与连续 28

2.1 数列的极限 28

2.1.1 数列 28

2.1.2 数列极限的概念 28

习题2.1 30

2.2 函数的极限 30

2.2.1 当x→∞时函数f(x)的极限 30

2.2.2 当x→xo时函数f(x)的极限 32

2.2.3 左极限与右极限 33

2.2.4函数极限的性质 34

习题2.2 35

2.3 无穷小量与无穷大量 36

2.3.1 无穷小量 36

2.3.2 无穷大量 38

2.3.3 无穷小量与无穷大量的关系 38

习题2.3 39

2.4 极限的运算法则 39

习题2.4 42

2.5 极限存在准则 两个重要极限 43

2.5.1 极限存在准则 43

2.5.2 两个重要极限 44

2.5.3 连续复利的计算 47

习题2.5 48

2.6 无穷小的比较 48

2.6.1 无穷小量的阶 48

2.6.2 利用无穷小量代换求极限 49

习题2.6 51

2.7 函数的连续性 51

2.7.1 连续函数的概念 52

2.7.2 函数连续的运算法则 53

2.7.3 利用函数连续性求函数极限 53

2.7.4 闭区间上连续函数的性质 54

2.7.5 函数的间断点 55

习题2.7 57

总习题2 58

第3章 导数和微分 62

3.1 导数的概念 62

3.1.1 导数的定义 62

3.1.2 导数的几何意义 66

3.1.3 函数四则运算的求导法 67

习题3.1 70

3.2 求导法则 71

3.2.1 复合函数求导法 71

3.2.2 反函数求导法 72

3.2.3 隐函数求导法 73

习题3.2 75

3.3 高阶导数 76

习题3.3 78

3.4 函数的微分 78

3.4.1 微分的概念 78

3.4.2 微分的运算公式 80

3.4.3 高阶微分 82

习题3.4 84

3.5 微分中值定理 84

3.5.1 罗尔(Rolle)定理 84

3.5.2 拉格朗日(Lagrange)中值定理 86

3.5.3 柯西(Cauchy)中值定理 89

习题3.5 90

3.6 洛必达法则 90

3.6.1 O/O型未定式 91

3.6.2 ∞/∞型未定式 93

3.6.3 衍生型未定式的极限 94

习题3.6 97

3.7 函数的单调性与极值 97

3.7.1 函数单调性的判定法 97

3.7.2 函数单调性的应用 99

3.7.3 函数的极值 99

习题3.7 104

3.8 曲线的凹向性 拐点 渐近线绘制函数图形 104

3.8.1 曲线的凹向性 105

3.8.2 曲线的拐点 106

3.8.3 曲线的渐近线 107

3.8.4 函数图形的描绘 109

习题3.8 110

3.9 函数最值及其应用 110

3.9.1 函数的最大值与最小值 110

3.9.2 实际应用问题举例 111

习题3.9 112

3.10 导数与微分在经济中的简单应用——边际分析与弹性分析 113

3.10.1 边际与边际分析 113

3.10.2 弹性与弹性分析 117

习题3.10 123

总习题3 124

第4章 不定积分 131

4.1 不定积分的概念和性质 131

4.1.1 原函数的概念 131

4.1.2 不定积分的概念 133

4.1.3 不定积分的性质 134

习题4.1 135

4.2 基本积分公式 135

习题4.2 138

4.3 换元积分法 139

4.3.1 第一类换元积分法 139

4.3.2 第二类换元积分法 144

习题4.3 149

4.4 分部积分法 150

习题4.4 154

总习题4 155

第5章 定积分 158

5.1 定积分的概念 158

5.1.1 引出定积分的例题 158

5.1.2 定积分的定义 160

5.1.3 定积分的几何意义 161

习题5.1 162

5.2 定积分的基本性质 162

习题5.2 165

5.3 微积分基本定理 166

5.3.1 变上限定积分的概念及其导数 166

5.3.2 牛顿-莱布尼茨公式 168

习题5.3 170

5.4 定积分的换元积分法 171

习题5.4 174

5.5 定积分的分部积分法 175

习题5.5 176

5.6 定积分的应用 177

5.6.1 平面图形的面积 177

5.6.2 旋转体的体积 178

5.6.3 经济应用举例 179

习题5.6 183

5.7 广义积分与Γ函数 184

5.7.1 无限区间上的积分 184

5.7.2 无界函数的积分 186

5.7.3 Γ函数 188

习题5.7 189

总习题5 190

第6章 无穷级数 194

6.1 无穷级数的概念 194

习题6.1 197

6.2 无穷级数的基本性质 197

习题6.2 200

6.3 正项级数 200

6.3.1 正项级数的概念 200

6.3.2 正项级数的比较判别法 201

6.3.3 正项级数的比值判别法 205

6.3.4 正项级数的根值判别法 206

习题6.3 208

6.4 任意项级数与绝对收敛 208

习题6.4 212

6.5 幂级数 213

6.5.1 函数项级数的概念 213

6.5.2 幂级数及其收敛性 213

6.5.3 幂级数的运算性质 218

习题6.5 220

6.6 函数展开成幂级数 221

6.6.1 泰勒级数 221

6.6.2 直接展开法 223

6.6.3 间接展开法 226

习题6.6 230

6.7 幂级数的应用举例 231

习题6.7 233

总习题6 233

第7章 多元函数微分学 239

7.1 多元函数的概念 239

7.1.1 平面点集 239

7.1.2 多元函数的定义 241

7.1.3 二元函数z=f(x,y)的几何意义 242

7.1.4 二元函数的极限与连续 242

习题7.1 244

7.2 偏导数与全微分 245

7.2.1 偏导数的概念 245

7.2.2 偏导数的几何意义 246

7.2.3 全微分的概念 247

习题7.2 249

7.3 高阶偏导数 250

7.3.1 二阶偏导数 250

7.3.2 二元复合函数的链式求导法则 252

习题7.3 254

7.4 多元函数的极值及其求法 254

7.4.1 多元函数的极值和最值 255

7.4.2 条件极值与拉格朗日乘数法 257

习题7.4 258

总习题7 259

第8章 多元函数积分学 261

8.1 二重积分的概念与性质 261

8.1.1 二重积分的概念 261

8.1.2 二重积分的性质 264

习题8.1 266

8.2 二重积分的计算 266

8.2.1 利用直角坐标计算二重积分 266

8.2.2 利用极坐标计算二重积分 272

习题8.2 274

总习题8 275

第9章 微分方程 278

9.1 微分方程的基本概念 278

习题9.1 280

9.2 可分离变量的微分方程 280

9.2.1 可分离变量的微分方程的概念 280

9.2.2 齐次微分方程 282

9.2.3 可化为齐次方程的微分方程 283

习题9.2 285

9.3 一阶线性微分方程 285

9.3.1 一阶线性微分方程的概念 285

9.3.2 伯努利(Bernulli)方程 287

9.3.3 一阶微分方程在经济中应用 289

习题9.3 292

9.4 全微分方程 292

习题9.4 295

9.5 可降阶的高阶微分方程 295

习题9.5 297

9.6 线性微分方程 297

习题9.6 306

总习题9 306

部分习题参考答案 310

参考文献 342