第1章 简介:什么是数据科学 1
1.1 大数据和数据科学的喧嚣 1
1.2 冲出迷雾 2
1.3 为什么是现在 3
1.4 数据科学的现状和历史 5
1.5 数据科学的知识结构 8
1.6 思维实验:元定义 10
1.7 什么是数据科学家 11
1.7.1 学术界对数据科学家的定义 12
1.7.2 工业界对数据科学家的定义 12
第2章 统计推断、探索性数据分析和数据科学工作流程 14
2.1 大数据时代的统计学思考 14
2.1.1 统计推断 15
2.1.2 总体和样本 16
2.1.3 大数据的总体和样本 17
2.1.4 大数据意味着大胆的假设 19
2.1.5 建模 21
2.2 探索性数据分析 26
2.2.1 探索性数据分析的哲学 27
2.2.2 练习:探索性数据分析 29
2.3 数据科学的工作流程 31
2.4 思维实验:如何模拟混沌 34
2.5 案例学习:RealDirect 35
2.5.1 RealDirect是如何赚钱的 36
2.5.2 练一练:RealDirect公司的数据策略 36
第3章 算法 39
3.1 机器学习算法 40
3.2 三大基本算法 41
3.2.1 线性回归模型 42
3.2.2 k近邻模型(k-NN) 55
3.2.3 k均值算法 64
3.3 练习:机器学习算法基础 68
3.4 总结 72
3.5 思维实验:关于统计学家的自动化 73
第4章 垃圾邮件过滤器、朴素贝叶斯与数据清理 74
4.1 思维实验:从实例中学习 74
4.1.1 线性回归为何不适用 75
4.1.2 k近邻效果如何 77
4.2 朴素贝叶斯模型 78
4.2.1 贝叶斯法则 79
4.2.2 个别单词的过滤器 80
4.2.3 直通朴素贝叶斯 82
4.3 拉普拉斯平滑法 83
4.4 对比朴素贝叶斯和k近邻 85
4.5 Bash代码示例 85
4.6 网页抓取:API和其他工具 87
4.7 Jake的练习题:文章分类问题中的朴素贝叶斯模型 88
第5章 逻辑回归 92
5.1 思维实验 93
5.2 分类器 94
5.2.1 运行时间 95
5.2.2 你自己 95
5.2.3 模型的可解释性 95
5.2.4 可扩展性 96
5.3 逻辑回归:一个来自M6D的真实案例研究 96
5.3.1 点击模型 96
5.3.2 模型背后 97
5.3.3 α和β的参数估计 99
5.3.4 牛顿法 101
5.3.5 随机梯度下降法 101
5.3.6 操练 101
5.3.7 模型评价 102
5.4 练习题 105
第6章 时间戳数据与金融建模 110
6.1 Kyle Teague与GetGlue公司 110
6.2 时间戳 112
6.2.1 探索性数据分析(EDA) 113
6.2.2 指标和新变量 117
6.2.3 下一步怎么做 117
6.3 轮到Cathy O’Neill了 118
6.4 思维实验 118
6.5 金融建模 119
6.5.1 样本期内外以及因果关系 120
6.5.2 金融数据处理 121
6.5.3 对数收益率 123
6.5.4 实例:标准普尔指数 124
6.5.5 如何衡量波动率 126
6.5.6 指数平滑法 128
6.5.7 金融模型的反馈 128
6.5.8 聊聊回归模型 130
6.5.9 先验信息量 130
6.5.10 一个小例子 131
6.6 练习:GetGlue提供的时间戳数据 134
第7章 从数据到结论 136
7.1 William Cukierski 136
7.1.1 背景介绍:数据科学竞赛 136
7.1.2 背景介绍:众包模式 137
7.2 Kaggle模式 139
7.2.1 Kaggle的参赛者 140
7.2.2 Kaggle的客户 141
7.3 思维实验:关于作业自动评分系统 143
7.4 特征选择 145
7.4.1 例子:留住用户 146
7.4.2 过滤型 149
7.4.3 包装型 149
7.4.4 决策树与嵌入型变量选择 151
7.4.5 熵 153
7.4.6 决策树算法 155
7.4.7 如何在决策树模型中处理连续性变量 156
7.4.8 随机森林 157
7.4.9 用户黏性:模型的预测能力与可解释性 159
7.5 David Huffaker:谷歌社会学研究的新方法 160
7.5.1 从描述性统计到预测模型 161
7.5.2 谷歌的社交研究 163
7.5.3 隐私保护 163
7.5.4 思维实验:如何消除用户的顾虑 164
第8章 构建面向大量用户的推荐引擎 165
8.1 一个真实的推荐引擎 166
8.1.1 最近邻算法回顾 167
8.1.2 最近邻模型的已知问题 168
8.1.3 超越近邻模型:基于机器学习的分类模型 169
8.1.4 高维度问题 171
8.1.5 奇异值分解(SVD) 172
8.1.6 关于SVD的重要特性 172
8.1.7 主成分分析(PCA) 173
8.1.8 交替最小二乘法 174
8.1.9 固定矩阵V,更新矩阵U 175
8.1.10 关于这些算法的一点思考 176
8.2 思维实验:如何过滤模型中的泡沫 176
8.3 练习:搭建自己的推荐系统 176
第9章 数据可视化与欺诈侦测 179
9.1 数据可视化的历史 179
9.1.1 Gabriel Tarde 180
9.1.2 Mark的思维实验 181
9.2 到底什么是数据科学 181
9.2.1 Processing 182
9.2.2 Franco Moretti 182
9.3 一个数据可视化的方案实例 183
9.4 Mark的数据可视化项目 186
9.4.1 《纽约时报》大厅里的可视化:Moveable Type 186
9.4.2 屏幕上的生命:Cascade可视化项目 188
9.4.3 Cronkite广场项目 189
9.4.4 eBay与图书网购 190
9.4.5 公共剧场里的“莎士比亚机” 192
9.4.6 这些展览的目的是什么 193
9.5 数据科学和风险 193
9.5.1 关于Square公司 194
9.5.2 支付风险 194
9.5.3 模型效果的评估问题 197
9.5.4 建模小贴士 200
9.6 数据可视化在Square 203
9.7 Ian的思维实验 204
9.8 关于数据可视化 204
第10章 社交网络与数据新闻学 207
10.1 Morning Analytics与社交网络 207
10.2 社交网络分析 209
10.3 关于社交网络分析的相关术语 209
10.3.1 如何衡量向心性 210
10.3.2 使用哪种向心性测度 211
10.4 思维实验 212
10.5 Momingside Analytics 212
10.6 从统计学的角度看社交网络分析 215
10.6.1 网络的表示方法与特征值向心度 215
10.6.2 随机网络的第一个例子:Erdos-Renyi模型 217
10.6.3 随机网络的第二个例子:指数随机网络图模型 217
10.7 数据新闻学 220
10.7.1 关于数据新闻学的历史回顾 220
10.7.2 数据新闻报告的写作:来自专家的建议 220
第11章 因果关系研究 222
11.1 相关性并不代表因果关系 223
11.1.1 对因果关系提问 223
11.1.2 干扰因子:一个关于在线约会网站的例子 224
11.2 OK Cupid的发现 225
11.3 黄金准则:随机化临床实验 226
11.4 A/B测试 228
11.5 退一步求其次:关于观察性研究 229
11.5.1 辛普森悖论 230
11.5.2 鲁宾因果关系模型 231
11.5.3 因果关系的可视化 232
11.5.4 定义:因果关系 233
11.6 三个小建议 235
第12章 流行病学 236
12.1 Madigan的学术背景 236
12.2 思维实验 237
12.3 统计学在现代 238
12.4 医学文献与观察性研究 238
12.5 分层法不解决干扰因子的问题 239
12.6 就没有更好的办法吗 241
12.7 研究性实验(OMOP) 242
12.8 最后的思维实验 246
第13章 从竞赛中学到的:数据泄漏和模型评价 247
13.1 Claudia作为数据科学家的知识结构 247
13.1.1 首席数据科学家的生活 248
13.1.2 作为一名女数据科学家 248
13.2 数据挖掘竞赛 249
13.3 如何成为出色的建模者 250
13.4 数据泄漏 250
13.4.1 市场预测 251
13.4.2 亚马逊案例学习:出手阔绰的顾客 251
13.4.3 珠宝抽样问题 251
13.4.4 IBM客户锁定 252
13.4.5 乳腺癌检测 253
13.4.6 预测肺炎 253
13.5 如何避免数据泄漏 254
13.6 模型评价 255
13.6.1 准确度重要吗 256
13.6.2 概率的重要性,不是非0即1 256
13.7 如何选择算法 259
13.8 最后一个例子 259
13.9 临别感言 260
第14章 数据工程:MapReduce、Pregel、Hadoop 261
14.1 关于David Crawshaw 262
14.2 思维实验 262
14.3 MapReduce 263
14.4 单词频率问题 264
14.5 其他MapReduce案例 267
14.6 Pregel 268
14.7 关于Josh Wills 269
14.8 思维实验 269
14.9 给数据科学家的话 269
14.9.1 数据丰富和数据质乏 270
14.9.2 设计模型 270
14.10 算算Hadoop的经济账 270
14.10.1 Hadoop简介 271
14.10.2 Cloudera 271
14.11 Josh的工作流程 272
14.12 如何开始使用Hadoop 272
第15章 听听学生们怎么说 273
15.1 重在过程 273
15.2 不再简单 274
15.3 援助之手 275
15.4 殊途同归 277
15.5 逢山开路,遇水架桥 279
15.6 作品展示 279
第16章 下一代数据科学家、自大狂和职业道德 281
16.1 前面都讲了些什么 281
16.2 什么是数据科学(再问一次) 282
16.3 谁是下一代的数据科学家 283
16.3.1 成为解决问题的人 284
16.3.2 培养软技能 284
16.3.3 成为提问者 285
16.4 做一个有道德感的数据科学家 286
16.5 对于职业生涯的建议 289