《化学传感器:仿真与建模 第3卷 固态设备 上 英文影印版》PDF下载

  • 购买积分:10 如何计算积分?
  • 作  者:(摩尔)科瑞特森科韦主编
  • 出 版 社:哈尔滨:哈尔滨工业大学出版社
  • 出版年份:2015
  • ISBN:7560349046
  • 页数:229 页
图书介绍:

1 MOLECULAR MODELING:APPLICATION TO HYDROGEN INTERACTION WITH CARBON-SUPPORTED TRANSITION METAL SYSTEMS&Samir H.Mushrif Gilles H.Peslherbe Alejandro D.Rey 1

1 Introduction 1

2 Molecular Modeling Methods 7

2.1 Molecular Mechanics 7

2.2 Electronic Structure Theory 11

2.3 Density Functional Theory 14

2.4 Plane-Wave Pseudo-Potential Methods 19

2.5 Optimization Techniques 22

3 Modeling Hydrogen Interaction with Doped Transition Metal Carbon Materials Using Car-Parrinello Molecular Dynamics and Metadynamics 30

3.1 Dissociative Chemisorption 33

3.2 Spillover and Migration of Hydrogen 35

4 Summary 42

References 43

2 SURFACE MODIFICATION OF DIAMOND FOR CHEMICAL SENSOR APPLICATIONS:SIMULATION AND MODELING&Karin Larsson 51

1 Introduction 51

2 Factors Influencing Surface Reactivity 52

3 Diamond as a Sensor Material 52

3.1 Background 52

3.2 Electrochemical Properties of Diamond Surfaces 54

4 Theory and Methodology 55

4.1 Density Functional Theory 55

4.2 Force-Field Methods 62

5 Diamond Surface Chemistry 63

5.1 Electron Transfer from an H-Terminated Diamond (100)Surface to an Atmospheric Water Adlayer;a Quantum Mechanical Study 63

5.2 Effect of Partial Termination with Oxygen-Containing Species on the Electron-Transfer Processes 66

5.3 The Energetic Possibility to Completely Oxygen-Terminate a Diamond Surface 70

5.4 Effect on Electron-Transfer Processes of Complete Termination with Oxygen-Containing Species 76

5.5 Biosensing 78

5.6 Simulation of the Pluronic F108 Adsorption Layer on F-,H-,O-,and OH-Terminated NCD Surfaces 80

References 81

3 GENERAL APPROACH TO DESIGN AND MODELING OF NANOSTRUCTURE-MODIFIED SEMICONDUCTOR AND NANOWIRE INTERFACES FOR SENSOR AND MICROREACTOR APPLICATIONS&J.L.Gole W.Laminack 87

1 Introduction:The IHSAB Model for Porous Silicon Sensors and Microreactors 87

2 The Interface on Extrinsic Semiconductors 89

3 The IHSAB Concept as the Basis for Nanostructure-Directed Physisorption(Electron Transduction)at Sensor Interfaces 94

4 The Extrinsic Semiconductor Framework 97

5 Physisorption(Electron Transduction)and the Response of a Nanostructure-Modified Sensor Platform 100

6 The Underlying IHSAB Principle 114

7 Application to Nanowire Configurations 116

8 Application to Additional Semiconductors 119

9 Time-Varying Operation and False-Positives;Sensing in an Unsaturated Mode 119

10 Sensor Rejuvenation 122

11 Summary of Sensor Attributes 123

12 Extension to Phytocatalysis-Enhanced System 123

13 Mixed Gas Format 125

14 Comparison to Alternative Technologies 126

15 Chemisorption and the Analog of the HSAB Principle 127

16 Physisorption(Electron Transduction)versus Chemisorption 129

17 Outlook 130

Acknowledgments 132

References 132

4 DETECTION MECHANISMS AND PHYSICO-CHEMICAL MODELS OF SOLID-STATE HUMIDITY SENSORS&V.K.Khanna 137

1 Introduction 137

2 Humidity-Sensitive Materials 138

3 Resistive and Capacitive Humidity-Sensing Configurations,and Other Structures 139

4 Equivalent Circuit Modeling of Humidity Sensors 141

5 General Approaches to the Formulation of Humidity Sensor Models 143

6 Theories of Adsorption of Water on the Surfaces of Solids 143

6.1 Hydroxylation of the Surface by Chemisorption of Water 143

6.2 Mono-and Multilayer Physisorption and Brunauer-Emmett-Teller(BET)Theory 144

6.3 Capillary Condensation of Water Vapor 146

7 Modeling the Kinetics of Diffusion of Water in Solids 146

8 Surface Conduction Mechanisms on Solids and Humidity-Induced Surface Conductivity Modulation 147

9 Dielectric Properties of Solids Containing Adsorbed Water 148

9.1 The Modified Clausius-Mosotti Equation in the Presence of Moisture 148

9.2 Maxwell-Wagner Effect in Heterogeneous Binary Systems 148

9.3 Sillars's Theory for Spheroidal Particles Sparsely Distributed in an Insulator 149

10 Fleming's Approach:Surface Electrostatic Field Model 150

11 Theory of the Porous Alumina Humidity Sensor,and Simulation of Its Capacitance and Resistance Characteristics 152

11.1 Microstructure of Porous Anodic Alumina 152

11.2 Water Vapor Adsorption on Porous Alumina 155

11.3 Adsorption Isotherm on Porous Alumina 156

11.4 Surface Conduction Mechanisms on Porous Alumina and Their Correlation with Surface Conductivity Variation with Humidity 157

11.5 Statistical Distribution of Humidity-Dependent Surface Conductivity of Alumina Among Pores 159

11.6 Response of Dielectric Properties of Alumina to Humidity Changes 160

11.7 Influence of Pore Shape Parameter(λ)on Capacitance and Resistance Variation 166

12 Dynamic Behavior and Transient Response Modeling of Humidity Sensors 167

12.1 The Tetelin-Pellet Model 167

12.2 Designing a Short-Response-Time Humidity Sensor Structure 169

13 Modeling the Diffusion Kinetics of Cylindrical Film and Cylindrical Body Structures for Enhanced-Speed Humidity Sensing 170

14 Effect of Ionic Doping on Humidity Sensor Performance 173

14.1 Anionic Doping in Al2O3 Humidity Sensors 173

14.2 Alternative Doping Techniques 175

15 Modeling the Drift and Ageing of Humidity Sensors 175

16 Artificial Neural Network (ANN)-Based Behavioral Modeling of Humidity Sensors 177

17 Modeling Other Types of Humidity Sensors 179

17.1 Microgravimetric Humidity Sensors:The Sauerbrey Equation 179

17.2 Surface Acoustic Wave(SAW) Delay-Line Humidity Sensors Using Velocity and Attenuation Changes 180

17.3 Microcantilever Stress-Based Humidity Sensors:Stoney's formula 181

17.4 Field-Effect Humidity Sensors 182

18 Discussion of Humidity Sensor Models 184

19 Conclusions and Outlook 184

Dedication 186

Acknowledgments 186

References 186

5 THE SENSING MECHANISM AND RESPONSE SIMULATION OF THE MIS HYDROGEN SENSOR&Linfeng Zhang 191

1 Introduction 191

2 Sensors and Their Sensing Mechanisms 192

2.1 Metal-Semiconductor Sensors 192

2.2 Metal-Semiconductor-Metal Sensors 194

2.3 Metal-Insulator-Semiconductor Sensors 197

3 Gas Diffusion 200

4 Kinetics of Surface and Interface Adsorption 205

5 Simulations 209

5.1 MS Sensors 209

5.2 MIS Sensors 212

6 Conclusions 219

Appendix 219

References 228