《催化剂分离、回收与再生 化学与工艺流程设计 英文本》PDF下载

  • 购买积分:10 如何计算积分?
  • 作  者:(英)David J. Cole-Hamilton,(英)Robert P. Tooze编著
  • 出 版 社:北京:科学出版社
  • 出版年份:2008
  • ISBN:9787030211897
  • 页数:250 页
图书介绍:本书提出了新的办法来解决从均相催化中分离反应产物的难题。新流程涉及低浸出负载型催化剂,可溶性支持措施,如聚合物和树枝状大分子,不寻常的溶剂,例如水,含氟有机物,离子液体和超临界流体。不同于其他书籍,除了所涉及的化学,本书着眼于过程的设计,并与现有过程进行了比较,并给出了实例。本书还收录:新工艺分离的产品解决方案,含有均相催化剂;催化剂对不溶性或可溶性支持-固定床催化剂-连续流或超滤;双相系统:水-有机氟-有机,离子液体-有机,超临界流体(单相或双相与水,有机或离子液体);对比当前的过程,涉及大气或低温蒸馏;考察化学与工艺设计;每种方案的利弊等。本书可供催化化学专业研究生,化工、医药工业科研人员参考使用。

CHAPTER 1 HOMOGENEOUS CATALYSIS-ADVANTAGES AND PROBLEMS 1

1.1 Catalysis 1

1.2 Catalyst Stability 4

1.2.1 THERMALLY INDUCED DECOMPOSITION 4

1.2.2 CHEMICALLY INDUCED DECOMPOSITION 5

1.2.3 PHYSICAL LOSS FROM THE PROCESS 6

1.3 Layout of the Book 6

1.4 References 8

CHAPTER 2 CLASSICAL HOMOGENEOUS CATALYST SEPARATION TECHNOLOGY 9

2.1.1 Coverage of Chapter 9

2.2 Generai Process Considerations 9

2.3 Everything is a Reactor 10

2.4 Overview of Separation Technologies 10

2.4.1 TRADITIONAL COBAL T WITH CATAL YST DECOMPOSITION 10

2.4.2 UNION CARBIDE-DAVY GAS RECYCLE PROCESS 11

2.4.3 LIQUID RECYCLE 12

2.4.4 BIPHASIC SYSTEMS;WATER-ORGANIC 14

2.4.5 INDUCED PHASE SEPARATION 14

2.4.6 NON-AQUEOUS PHASE SEPARATION 15

2.4.6.1 NAPS Using a Non-Polar Catalyst 16

2.4.6.2 NAPS Using a Polar Catalyst 17

2.4.6.3 Ligand Structure and Solubility Properties 17

2.5 Hypothetical processes-How Might the Product be Separated from the Catalyst? 18

2.5.1 PROPENE HYDROFORMYLATION 19

2.5.2 l-OCTENE HYDROFORMYLATION 20

2.5.3 ALLYL ALCOHOL 20

2.5.4 METHOXYVINYLNAPHTHALENE 21

2.5.5 SEPARATION TECHNOLOGY FOR LESS STABLE CATALYSTS 22

2.5.5.1 Mitsubishi TPPO/TPP Separation 22

2.5.5.2 Organic Polymer for Catalyst Stabilization 22

2.6 Real-World Complications 22

2.6.1 ORGANOPHOSPHORUS LIGAND DEGRADATIONS 23

2.6.1.1 Oxidation 23

2.6.1.2 Alkyldiarylphosphine Formation 23

2.6.1.3 Ligand Scrambling 24

2.6.1.4 Phosphine Reactions with Conjugated Systems 24

2.6.1.5 Phosphite Oxidation 24

2.6.1.6 Simple Phosphite Hydrolysis 25

2.6.1.7 Poisoning Phosphite Formation 25

2.6.1.8 Aldehyde Acid Formation 25

2.6.1.9 Acidity Control 26

2.6.2 SEPARATING BYPRODUCTS FROM REACTANTS OR PRODUCTS 27

2.6.2.1 Alkene Hydrogenation 27

2.6.2.2 Alkene Isomerization 27

2.6.2.3 Aldehyde Dimerization and Trimerization 27

2.6.2.4 Formation of Conjugated Carbonyls 28

2.6.3 INTRINSIC CATALYST DEACTIVATION 28

2.7 Further Separation Challenges 29

2.7.1 RECOVERY OF METAL VALUES FROM A SPENT CATALYST 29

2.7.1.1 Catalyst Containment and Capture Technologies 30

2.8 Concluding Remarks 35

2.9 References 36

CHAPTER 3 SUPPORTED CATALYSTS 39

Immobilisation of Tailor-made Homogeneous Catalysts 39

3.1 Introduction 39

3.2 Short Historical Overview 40

3.3 Polystyrene Supported Catalysts 41

3.4 Silica Supported Catalyst 44

3.5 Catalysis in Interphases 53

3.6 Ordered Mesoporous Support 58

3.7 Non-covalently Supported Catalysts 60

3.8 Supported Aqueous Phase Catalysis 63

3.9 Process Design [71] 65

3.10 Concluding Remarks 68

3.11 References 69

CHAPTER 4 SEPARATION BY SIZE-EXCLUSION FILTRATION 73

Homogeneous Catalysts Applied in Membrane Reactors 73

4.1 Introduction 73

4.2 Reactors 74

4.2.1 DEAD-END FILTRATION REACTORS 75

4.2.2 CROSS-FLOW FILTRATION REACTORS 76

4.3 Membranes 78

4.3.1 CLASSIFICATION OF FILTRATION TYPES 78

4.3.2 MEMBRANE MATERIALS 79

4.4 Dendrimer Supported Catalysts 80

4.4.1 KHARASCH ADDITION REACTION 81

4.4.2 ALLYLIC SUBSTITUTION REACTIONS 82

4.4.3 HYDROVINYLATION REACTION 86

4.4.4 HYDROGENATION REACTION 88

4.4.5 MICHAEL ADDITION REACTION 89

4.5 Dendritic Effects 90

4.6 Unmodified or Non-dendritic Catalysts 94

4.6.1 HYDROGENATION 95

4.6.2 PHASE TRANSFER CATALYSIS 97

4.7 Soluble Polymer Supported Catalysts 98

4.8 Concluding Remarks 102

4.9 References 102

CHAPTER 5 BIPHASIC SYSTEMS:WATER-ORGANIC 105

5.1 Introduction 105

5.2 Immobilization with the Help of Liquid Supports 106

5.2.1 GENERAL 106

5.2.2 BIPHASIC SYSTEMS 107

5.2.3 AQUEOUS BIPHASIC CATALYSIS 108

5.2.3.1 Water as a Solvent 108

5.2.3.2 Aqueous-phase Catalysis as a Unit Operation 110

5.2.4 EXAMPLES OF AQUEOUS BIPHASIC CATALYSIS 114

5.2.4.1 Hydroformylation(Ruhrchemie/Rh?ne-Poulenc[RCH/RP]process) 114

5.2.4.2 Other Industrially Used Aqueous-biphasic Processes 116

5.2.4.3 Short Overview of Other Reaction 118

5.2.5 OTHER PROPOSALS FOR WATER-BIPHASIC SYSTEMS 119

5.2.6 INTERLUDE-BIPHASIC SYSTEMS:ORGANIC-ORGANIC 123

5.3 Recycle and Recovery of Aqueous Catalysts 124

5.3.1 RECYCLING 126

5.3.2 RECOVERY 128

5.3.3 ECONOMICS OF THE PROCESS 132

5.3.4 ENVIRONMENTAL ASPECTS 132

5.4 Concluding Remarks 134

5.5 References 135

CHAPTER 6 FLUOROUS BIPHASIC CATALYSIS 145

6.1 Introduction 145

6.2 Aikene Hydrogenation 148

6.3 Alkene Hydrosilation 151

6.4 Alkene Hydroboration 151

6.5 Alkene Hydroformylation 152

6.6 Alkene Epoxidation 158

6.7 Other Oxidation Reactions 161

6.8 Allylic Alkylation 163

6.9 Heck,Stille,Suzuki,Sonagashira and Related Coupling Reactions 164

6.10 Asymmetric Alkylation of Aldehydes 166

6.11 Miscellaneous Catalytic Reactions 169

6.12 Fluorous Catalysis Without Fluorous Solvents 170

6.13 Continuous Processing 171

6.14 Process Synthesis for the Fluorous Biphasic Hydroformylation of l-Octene 175

6.15 Conclusions 178

6.16 Acknowledgement 179

6.17 References 179

CHAPTER 7 CATALYST RECYCLING USING IONIC LIQUIDS 183

7.1 Introduction 183

7.1.1 INTRODUCTION TO IONIC LIQUIDS 183

7.1.2 INTRODUCTION TO TRANSITION METAL CATALYSIS IN IONIC LIQUIDS 187

7.1.3 MULTIPHASIC CATALYSIS WITH IONIC LIQUIDS-ENGINEERING ASPECTS 189

7.2 Liquid-liquid Biphasic,Rh-catalysed Hydroformylation Using Ionic Liquids 192

7.3 Rhodium Catalysed Hydroformylation Using Supported Ionic Liquid Phase SILP)Catalysis 201

7.3.1 SUPPORTED IONIC LIQUIDS BY CHEMICAL BONDS 203

7.3.2 SUPPORTED IONIC LIQUIDS BY IMPREGNATION 204

7.4 Costs And Economics 206

7.5 Conclusions 209

7.6 References 210

CHAPTER 8 SUPERCRITICAL FLUIDS 215

Compressed Gases as Mobile Phase and Catalyst Support 215

8.1 Introduction to supercritical fluids 215

8.2 Applications of scCO2 in Catalyst Immobilisation 217

8.2.1 CO2 AS THE ONLY MASS SEPARATING AGENT 217

8.2.2 BIPHASIC SYSTEMS CONSISTING OF CO2 AND LIQUID PHASES 223

8.2.2.1 Water as the Liquid Phase 223

8.2.2.2 Poly(ethyleneglycol)(PEG)as the Liquid Phase 225

8.2.2.3 Ionic Liquids as the Liquid Phase 225

8.2.3 BIPHASIC SYSTEMS CONSISTING OF CO2 AND SOLID PHASES 230

8.2.3.1 Inorganic Supports 230

8.2.3.2 Organic Polymer Supports 231

8.3 Economic Evaluation and Summary 232

8.3.1 POTENTIAL FOR SCALE-UP 232

8.4 Summary 234

8.5 References 234

CHAPTER 9 AREAS FOR FURTHER RESEARCH 237

9.1 Introduction 237

9.2 Conventional Separation Methods(See Chapter 2) 239

9.3 Catalysts on Insoluble Supports(Chapter 3) 240

9.4 Catalysts on Soluble Supports(Chapter 4) 241

9.5 Aqueous Biphasic Catalysis(Chapter 5) 242

9.6 Fluorous Biphasic Catalysis(Chapter 6) 243

9.7 Reactions Involving Ionic Liquids(Chaoter 7) 244

9.8 Reactions Using Supercritical Fluids(Chapter 8) 245

9.9 Conclusions 247

9.10 References 247