《激光和电光学》PDF下载

  • 购买积分:20 如何计算积分?
  • 作  者:CHRISTOPHER C.DAVIS著
  • 出 版 社:世界图书出版公司北京公司
  • 出版年份:2004
  • ISBN:750623873X
  • 页数:720 页
图书介绍:This comprehensive textbook provides a detailed introduction to the basic physics and engineering aspects of lasers, as well as to the design and operational principles of a wide range of optical systems and electro-optic devices. Throughout, full details of important derivations and results are given, as are many practical examples of the design, construction, and performance characteristics of different types of lasers and electro-optic devices. .The first half of the book deals with the funda

1 Spontaneous and Stimulated Transitions 1

1.1 Introduction 1

1.2 Why'Quantum'Electronics? 1

1.3 Amplification at Optical Frequencies 3

1.3.1 Spontaneous Emission 4

1.3.2 Stimulated Emission 6

1.4 The Relation Between Energy Density and Intensity 7

1.4.1 Stimulated Absorption 10

1.5 Intensity of a Beam of Electromagnetic Radiation in Terms of Photon Flux 11

1.6 Black-Body Radiation 11

1.7 Relation Between the Einstein A and B Coefficients 16

1.8 The Effect of Level Degeneracy 18

1.9 Ratio of Spontaneous and Stimulated Transitions 19

1.10 Problems 20

2 Optical Frequency Amplifiers 22

2.1 Introduction 22

2.2 Homogeneous Line Broadening 22

2.2.1 Natural Broadening 22

2.3 Inhomogeneous Broadening 26

2.3.1 Doppler Broadening 27

2.4 Optical Frequency Amplification with a Homogeneously Broadened Transition 30

2.4.1 The Stimulated Emission Rate in a Homogeneously Broadened System 33

2.5 Optical Frequency Amplification with Inhomogeneous Broadening Included 34

2.6 Optical Frequency Oscillation-Saturation 35

2.6.1 Homogeneous Systems 35

2.6.2 Inhomogeneous Systems 38

2.7 Power Output from a Laser Amplitier 44

2.8 The Electron Oscillator Model of a Radiative Transition 45

2.9 What Are the Physical Significances of x'and x"? 49

2.10 The Classical Oscillator Explanation for Stimulated Emission 52

2.11 Problems 54

References 55

3 Introduction to Two Practical Laser Systems 57

3.1 Introduction 57

3.1.1 The Ruby Laser 57

3.2 The Helium-Neon Laser 63

References 67

4 Passive Optical Resonators 68

4.1 Introduction 68

4.2 Preliminary Consideration of Optical Resonators 68

4.3 Calculation of the Energy Stored in an Optical Resonator 70

4.4 Quality Factor of a Resonator in Terms of the Transmission of its End Reflectors 72

4.5 Fabry-Perot Etalons and Interferometers 73

4.6 Internal Field Strength 79

4.7 Fabry-perot Interferometers as Optical Spectrum Analyzers 81

4.7.1 Example 84

4.8 Problems 86

References 87

5 Optical Resonators Containing Amplifying Media 88

5.1 Introduction 88

5.2 Fabry-Perot Resonator Containing an Amplifying Medium 88

5.2.1 Threshold Population Inversion-Numerical Example 91

5.3 The Oscillation Frequency 92

5.4 Multimode Laser Oscillation 93

5.5 Mode-Beating 99

5.6 The Power Output of a Laser 101

5.7 Optimum Coupling 105

5.8 Problems 106

References 107

6 LaserRadiation 108

6.1 Introduction 108

6.2 Diffraction 108

6.3 Two Parallel Narrow Slits 110

6.4 Single Slit 110

6.5 Two-Dimensional Apertures 111

6.5.1 Circular Aperture 111

6.6 LaserModes 113

6.7 Beam Divergence 117

6.8 Linewidth of Laser Radiation 118

6.9 Coherence Properties 119

6.10 Interference 121

6.11 Problems 124

References 124

7 Control of Laser Oscillators 126

7.1 Introduction 126

7.2 Multimode Operation 126

7.3 Single Longitudinal Mode Operation 127

7 4 Mode-Locking 131

7.5 Methods of Mode-Locking 134

7.5.1 Active Mode-Locking 134

7.6 Pulse Compression 138

References 139

8 Optically Pumped Solid-Stare Lasers 141

8.1 Introduction 141

8.2 Optical Pumping in Three-and Four-Level Lasers 141

8.2.1 Effective Lifetime of the Levels Involved 141

8.2.2 Threshold Inversion in Three-and Four-Level Lasers 142

8.2.3 Quantum Efficiency 143

8.2.4 Pumping Power 143

8.2.5 Threshold Lamp Power 144

8.3 PuIsed Versus CW Operation 144

8.3.1 Threshold for Pulsed Operation of a Ruby Laser 145

8.3.2 Threshold for CW Operation of a Ruby Laser 145

8.4 Threshold Population Inversion and Stimulated Emission Cross-Section 146

8.5 Paramagnetic Ion Solid-State Lasers 147

8.6 The Nd:YAG Laser 147

8 6.1 Efiective Spontaneous Emission Coefficient 152

8.6.2 Example-Threshold Pump Energy of a Pulsed Nd:YAG Laser 153

8.7 CW Operation of the Nd:YAG Laser 154

8.8 TheNd3+ Glass Laser 154

8.9 Geometrical Arrangements for Optical Pumping 159

8.9.1 Axisymmetric Optical Pumping of a Cylindrical Rod 159

8.10 High Power Pulsed Solid-State Lasers 166

8.11 Diode-Pumped Solid-State Lasers 167

8.12 Relaxation Oscillations(Spiking) 168

8.13 Rate Equations for Relaxation Oscillation 170

8.14 Undamped Relaxation Oscillations 174

8.15 Giant Pulse(Q-Switched)Lasers 175

8.16 Theoretical Description of the Q-Switching Process 179

8.16.1 Example Calculation of Q-Switched Pulse Characteristics 182

8.17 Problems 183

References 183

9 Gas Lasers 185

9.1 Introduction 185

9.2 Optical Pumping 185

9.3 Electron lmpact Excitation 187

9.4 The Argon Ion Laser 188

9.5 Pumping Saturation in Gas Laser Systems 190

9.6 Pulsed Ion Lasers 191

9.7 CW Ion Lasers 192

9.8 'Metal'Vapor Ion Lasers 196

9.9 Gas Discharges for Exciting Gas Lasers 199

9.10 Rate Equations for Gas Discharge Lasers 201

9.11 Problems 204

References 205

10 Molecular Gas Lasers Ⅰ 207

10.1 Introduction 207

10.2 The Energy Levels of Molecules 207

10.3 Vibrations of a Polyatomic Molecule 212

10.4 Rotational Energy States 214

10.5 Rotational Populations 214

10.6 The Overall Energy State of a Molecule 216

10.7 The Carbon Dioxide Laser 217

10.8 The Carbon Monoxide Laser 222

10.9 Other Gas Discharge Molecular Lasers 224

References 224

11 Molecular Gas Lasers Ⅱ 225

11.1 Introduction 225

11.2 Gas Transport Lasers 225

11.3 Gas Dynamic Lasers 228

11.4 High Pressure Pulsed Gas Lasers 232

11.5 Ultraviolet Molecular Gas Lasers 238

11.6 Photodissociation Lasers 241

11.7 Chemieal Lasers 241

11.8 Far-Infrared Lasers 244

11.9 Problems 244

References 246

12 Tunable Lasers 248

12.1 Introduction 248

12.2 Organic Dye Lasers 248

12.2.1 Energy Level Structure 248

12.2.2 Pulsed Laser Excitation 251

12.2.3 CW Dye Laser Operation 252

12.3 Calculation of Threshold Pump Power in Dye Lasers 253

12.3.1 Pulsed Operation 256

12.3.2 CW Operation 259

12.4 Inorganic Liquid Lasers 260

12.5 Free Electron Lasers 260

12.6 Problems 266

References 266

13 Semiconductor Lasers 267

13.1 Introduction 267

13.2 Semiconductor Physics Background 267

13.3 Carrier Concentrations 271

13.4 Intrinsic and Extrinsic Semiconductors 274

13.5 The p-n Junction 275

13.6 Recombination and Luminescence 280

13.6.1 The Spectrum of Recombination Radiation 281

13.6.2 External Quantum Efficiency 283

13.7 Heterojunctions 285

13.7.1 Ternary and Quaternary Lattice-Matched Materials 285

13.7 2 Energy Barriers and Rectification 286

13.7.3 The Double Heterostructure 286

13.8 Semiconductor Lasers 290

13.9 The Gain Coefficient of a Semiconductor Laser 292

13.9.1 Estimation of Semiconductor Laser Gain 293

13.10 Threshold Current and Powet-Voltage Characteristics 295

13.11 Longitudinal and Transverse Modes 296

13.12 Semiconductor Laser Structures 297

13.12.1 Distributed Feedback(DFB)and Distributed Bragg Reflection(DBR) Lasers 299

13.13 Surface Emitting Lasers 304

13.14 Laser Diode Arrays and Broad Area Lasers 306

13.15 Quantum Well Lasers 307

13.16 Problems 310

References 311

14 Analysis of Optical Systems Ⅰ 312

14.1 Introduction 312

14.2 The Propagation of Rays and Waves through Isotropic Media 312

14.3 Simple Reflection and Refraction Analysis 313

14.4 Paraxial Ray Analysis 316

14.4.1 Matrix Formulation 316

14.4.2 Ray Tracing 324

14.4.3 Imaging and Magnification 325

14.5 The Use of Impedances in Optics 327

14.5.1 Reflectance for Waves Incident on an Interface at Oblique Angles 331

14.5.2 Brewster's Angle 332

14.5.3 Transformation of Impedance through Multilayer Optical Systems 332

14.5.4 Polarization Changes 334

14.6 Problems 335

References 336

15 Analysis of Optical Systems Ⅱ 337

15.1 Introduction 337

15.2 Periodic Optical Systems 337

15.3 The Identical Thin Lens Waveguide 339

15.4 The Propagation of Rays in Mirror Resonators 340

15.5 The Propagation of Rays in Isotropic Media 342

15.6 The Propagation of Spherical Waves 346

15.7 Problems 347

References 347

16 Optics ofGaussian Beams 348

16.1 Introduction 348

16.2 Beam-Like Solutions of the Wave Equation 348

16.3 Higher Order Modes 354

16.3.1 Beam Modes with Cartesian Symmetry 354

16.3.2 Cylindrically Symmetric Higher Order Beams 355

16.4 The Transformation of a Gaussian Beam by a Lens 357

16.5 Transformation of Gaussian Beams bv General Optical Systems 371

16.6 Gaussian Beams in Lens Waveguides 371

16.7 The Propagation of a Gaussian Beam in a Medium with a Quadratic Refractive Index Profile 372

16.8 The Propagation of Gaussian Beams in Media with Spatial Gain or Absorption Variations 372

16.9 Propagation in a Medium with a Parabolic Gain Profile 373

16.10 Gaussian Beams in Plane and Spherical Mirror Resonators 375

16.11 Symmetrical Resonators 377

16.12 An Example of Resonator Design 379

16.13 Difiraction Losses 381

16.14 Unstable Resonators 382

16.15 Problems 384

References 386

17 Optical Fibers and Waveguides 387

17.1 Introduction 387

17.2 Ray Theory of Cylindrical Optical Fibers 387

17.2.1 Meridional Rays in a Step-Index Fiber 387

17.2.2 Step-lndex Fibers 390

17.2.3 Graded-Index Fibers 392

17.2.4 Bound,Refracting,and Tunnelling Rays 393

17.3 Ray Theory of a Dielectric Slab Guide 395

17.4 The Goos-H?inchen Shift 397

17.5 Wave Theory of the Dielectric Slab Guide 399

17.6 P-Waves in the Slab Guide 400

17.7 Dispersion Curves and Field Distributions in a Slab Waveguide 404

17.8 S-Waves in the Slab Guide 406

17.9 Practical Slab Guide Geometries 407

17.10 Cylindrical Dielectric Waveguides 408

17.10.1 Fields in the Core 413

17.10.2 Fields in the Cladding 414

17.10.3 Boundary Conditions 414

17.11 Modes and Field Patterns 415

17.12 The Weakly-Guiding Approximation 416

17.13 Mode Patterns 417

17.14 Cutoff Frequencies 419

17.14.1 Example 421

17.15 Multimode Fibers 423

17.16 Fabrication ofOptical Fibers 423

17.17 Dispersion in Optical Fibers 425

17.17.1 Material Dispersion 427

17.17.2 Waveguide Dispersion 428

17.18 Solitons 430

17.19 Erbium-Doped Fiber Amplifiers 430

17.20 Coupling Optical Sources and Detectors to Fibers 433

17.20.1 Fiber Connectors 434

17.21 Problems 435

References 437

18 Optics of Anisotropic Media 438

18.1 Introduction 438

18.2 The Dielectric Teusor 438

18.3 Stored Electromagnetic Energy in Anisotropic Media 440

18.4 Propagation of Monochromatic Plane Waves in Anisotropic Media 441

18.5 The Two Possible Directions of D for a Given Wave Vector are Orthogonal 443

18.6 Angular Relationships between D,E,H,k,and the Poynting Vector S 444

18.7 The Indicatrix 446

18.8 Uniaxial Crystals 448

18.9 Index Surfaces 450

18.10 Other Surfaces Related to the Uniaxial Indicatrix 452

18.11 Huygenian Constructions 453

18.12 Retardation 457

18.13 Biaxial Crystals 461

18.14 Intensity Transmission Through Polarizer/Waveplate/Polarizer Combin-ations 464

18.14.1 Examples 465

18.15 The Jones Calculus 465

18.15.1 The Jones Vector 466

18.15.2 The Jones Matrix 467

18.16 Problems 470

References 471

19 The Electro-Optic and Acousto-Optic Effects and Modulation of Light Beams 472

19.1 Introduction to the Electro-Optic Effect 472

19.2 The Linear Electro-Optic Effect 472

19.3 The Quadratic Electro-Optic Effect 479

19.4 Longitudinal Electro-Optic Modulation 480

19.5 Transverse Electro-optic Modulation 482

19.6 Electro-Optic Amplitude Modulation 486

19.7 Electro-Optic Phase Modulation 488

19.8 High Frequency Waveguide Electro-Optic Modulators 489

19.8.1 Straight Electrode Modulator 490

19.9 Other High Frequency Electro-Optic Devices 493

19.10 Electro-Optic Beam Deflectors 495

19.11 Acousto-Optic Modulators 495

19.12 Applications of Acousto-Optic Modulators 502

19.12.1 Diffraction Efficiency of TeO2 502

19.12.2 Acousto-Optic Modulators 502

19.12.3 Acousto-Optic Beam Deflectors and Scanners 503

19.12.4 RF Spectrum Analysis 504

19.13 Construction and Materials for Acousto-Optic Modulators 504

19.14 Problems 507

References 507

20 Introduction to Nonlinear Processes 508

20.1 Introduction 508

20.2 Anharmonic Potentials and Nonlinear Polarization 508

20.3 Nonlinear Susceplibilities and Mixing Coefficients 512

20.4 Second Harmonic Generation 514

20.4.1 Symmetries and Kleinman's Conjecture 516

20.5 The Linear Electro-Optic Effect 516

20.6 Parametric and Other Nonlinear Processes 517

20 7 Macroscopic and Microscopic Susceptibilities 518

20.8 Problems 522

References 522

21 Wave Propagation in Nonlinear Media 524

21.1 Introduction 524

21.2 Electromagnetic Wayes and Nonlinear Polarization 524

21.3 Second Harmonic Generation 528

21.4 The Effective Nonlinear Coefficient deff 530

21.5 Phase Matching 532

21.5.1 Second Harmonic Generation 533

21.5.2 Example 533

21.5.3 Phase Matching in Sum-Frequency Generation 535

21.6 Beam Walk-Off and 90°Phase Matching 535

21.7 Second Harmonic Generation with Gaussian Beams 536

21.7.1 Intracavity SHG 537

21.7.2 External SHG 538

21.7.3 The Effects of Depletion on Second Harmonic Generation 538

21.8 Up-Conversion and Difference-Frequency Generation 541

21.9 Optical Parametric Amplification 542

21.9.1 Example 544

21.10 Parametric Oscillators 545

21.10.1 Example 547

21.11 Parametric Oscillator Tuning 548

21.12 Phase Conjugation 550

21.12.1 Phase Conjugation in CS2 553

21.13 Optical Bistability 554

21.14 Practical Details of the Use of Crystals for Nonlinear Applications 557

21.15 Problems 558

References 559

22 Detection of Optical Radiation 561

22.1 Introduction 561

22.2 Noise 561

22.2.1 Shot Noise 561

22.2.2 Johnson Noise 564

22 2.3 Generation-Recombination Noise and l/fNoise 567

22.3 Detector Performance Parameters 568

22.3.1 Noise Equivalent Power 568

22.3.2 Detectivity 569

22 3.3 Frequency Response and Time Constant 569

22.4 Practical Characteristics of Optical Derectors 570

22.4 1 Photoemissive Detectors 570

22.4.2 Photoconductive Detectors 576

22.4.3 Photovoltaic Detectors(Photodiodes) 582

22.4.4 p-i-n Photodiodes 586

22.4.5 Avalanche Photodiodes 587

22.5 Thermal Delectors 589

22.6 Detection Limits for Optical Detector Systems 591

22.6.1 Noise in Photomultipliers 592

22.6.2 Photon Counting 593

22.6.3 Signal-to-Noise Ratio in Direct Detection 594

22.6.4 Direct Detection with p-i-n Photodiodes 595

22.6.5 Direct Detection with APDs 597

22.7 Coherent Detection 598

22.8 Bit-Error Rate 603

References 605

23 Coherence Theory 607

23.1 Introduction 607

23.2 Square-Law Detectors 607

23.3 The Analytic Signal 608

23.3.1 Hilbert Transforms 610

23.4 Correlation Functions 611

23.5 Temporal and Spatial Coherence 614

23.6 Spatial Coherence 618

23.7 Spatial Coherence with an Extended Source 620

23.8 Propagation Laws of Partial Coherence 622

23.9 Propagation from a Finite Plane Surface 625

23.10 van Cittert-Zernike Theorem 630

23.11 Spatial Coherence of a Quasi-MonochromaticfUniform,Spatially Incoherent Circular Source 632

23.12 Intensity Correlation Interferometry 634

23.13 Intensity Fluctuations 635

23.14 Photon Statistics 638

23.14.1 Constant Intensity Source 639

23.14.2 Random Intensities 640

23.15 The Hanbury-Brown-Twiss Interferometer 643

23.16 Hanbury-Brown-Twiss Experiment with Photon Count Correlations 645

References 646

24 Laser Applications 647

24.1 Optical Communication Systems 647

24.1.1 Introduction 647

24.1.2 Absorption in Optical Fibers 649

24.1.3 Optical Conmmunication Networks 650

24.1.4 Optical Fiber Network Architectures 651

24.1.5 Coding Schemes in Optical Networks 653

24.1.6 Line-of-Sight Optical Links 654

24.2 Holography 656

24 2.1 Wavefront Reconstruction 656

24.2.2 The Hologram as a Diffraction Grating 660

24.2.3 Volume Holograms 661

24.3 Laser Isotope Separation 664

24.4 Laser Plasma Generation and Fusion 669

24.5 Medical Applications of Lasers 671

24.5.1 Laser Angioplasty 673

References 673

Appendix 1 Optical Terminology 676

Appendix 2 Theδ-Function 679

Appendix 3 Black-Body Radiation Formulas 681

Appendix 4 RLC Cireuit 683

A4.1 Analysis of a Driven RLC Circuit 683

Appendix 5 Storage and Transport of Energy by Electromagnetic Fields 686

Appendix 6 The Reflection and Refraction of a Plane Electromagnetic Wave at the Boundary Between Two Isotropic Media of Different Refractive Index 689

Appendix 7 The Vector Differential Equation for Light Rays 692

Appendix 8 Symmetry Properties of Crystals and the 32 Crystal Classes 695

A8.1 Class 6mm 696

A8.2 Class 42m 696

A8.3 Class 222 697

Appendix 9 Tensors 698

Appendix 10 Bessel Function Relations 701

Appendix 11 Green's Functions 702

Appendix 12 Recommended Values of Some Physical Constants 705

Index 706