《化学传感器:仿真与建模 第5卷 电化学传感器 上 英文影印版》PDF下载

  • 购买积分:10 如何计算积分?
  • 作  者:(摩尔)科瑞特森科韦主编
  • 出 版 社:哈尔滨:哈尔滨工业大学出版社
  • 出版年份:2015
  • ISBN:7560348988
  • 页数:247 页
图书介绍:

PART 1:SOLID-STATE ELECTROCHEMICAL SENSORS 3

1 SURFACE AND INTERFACE DEFECTS IN IONIC CRYSTALS&N.F.Uvarov 3

1 Introduction 3

1.1 Solid Electrolytes and Electrodes for Electrochemical Sensors:A Brief Overview 3

1.2 Surface and Interface Properties of Ionic Solids 6

2 Calculation of the Surface Potential and Surface Defects Using the Stern Model 8

2.1 Description of the Model 8

2.2 Pure Crystals of the NaCl Type 10

2.3 Surface Potential in NaCl Crystals Containing Divalent Cations 13

2.4 Comparison with Experimental Data 15

2.5 Surface Potential and Concentration of Point Defects on Grain Boundaries of Superionic Oxide Ceramics 15

2.6 Surface Disorder in Terms of Energy Diagrams 23

2.7 Defects on Interfaces 25

3 Size Effects in Nanocomposite Solid Electrolytes 29

4 Applications in Sensors 30

5 Conclusions 34

References 34

2 SOLID-STATE ELECTROCHEMICAL GAS SENSORS&C.O.Park I.Lee D.R.Lee J.W.Fergus N.Miura H.J.Yoo 41

1 Introduction 41

2 Electrode Potentials 42

3 Types of Electrochemical Sensors 46

3.1 Equilibrium Potentiometric Sensors 46

3.2 Mixed Potentiometric Sensors 49

3.3 Amperometric Sensors 53

4 Applications 57

4.1 Oxygen Sensors 57

4.2 Carbon Dioxide Sensors 64

4.3 NOx Sensors 66

4.4 SOx Sensors 76

4.5 Hydrogen Sensors 77

Acknowledgments 86

References 86

PART 2:ELECTROCHEMICAL SENSORS FOR LIQUID ENVIRONMENTS 95

3 MODELING AND SIMULATION OF IONIC TRANSPORT PROCESSES THROUGH IDEAL ION-EXCHANGE MEMBRANE SYSTEMS&A.A.Moya 95

1 Introduction 95

2 Theoretical Description 98

2.1 Ionic Transport in Ideal Ion-Exchange Membrane Systems 98

2.2 Electric Current Perturbations 101

2.3 Analytical Solutions 102

3 The Network Model 106

4 Network Simulation 108

4.1 Transient Response 109

4.2 Electrochemical Impedance 113

5 Conclusion 121

Nomenclature 122

Appendix 123

Acknowledgments 124

References 124

4 MECHANISM OF POTENTIAL DEVELOPMENT FOR POTENTIOMETRIC SENSORS,BASED ON MODELING OF INTERACTION BETWEEN ELECTROCHEMICALLY ACTIVE COMPOUNDS FROM THE MEMBRANE AND ANALYTE&R.-I.Stefan-van Staden 131

1 Introduction 131

2 The Membrane-Solution Interface 132

3 Membrane Configuration 132

4 New Theoretical Model for Potential Development Based on Membrane Equilibria 133

5 Mechanism of the Potential Development 134

6 Modeling—A Theoretical Approach to Predict the Response and Mechanism of Potential Development 137

7 Selectivity of Potentiometric Sensors:Explanation through Membrane Equilibria 149

7.1 Influence of the Composition of the Membrane on the Selectivity of Potentiometric Sensors 150

8 Conclusions 151

References 152

5 COMPUTER MODELING OF THE POTENTIOMETRIC RESPONSE OF ION-SELECTIVE ELECTRODES WITH IONOPHORE-BASED MEMBRANES&K.N.Mikhelson 155

1 Introduction 155

2 Physical Models of Ionophore-Based Membranes 158

2.1 Levels of ISE Membrane Modeling 158

2.2 One-Dimensional Approach to ISE Membrane Modeling 160

2.3 Segmented Model of the ISE Membrane 161

2.4 Integral Model of the ISE Membrane 164

3 Computer Modeling for the Phase Boundary Theory 166

3.1 Description of the ISE Response in Mixed Solutions Containing Differently Charged Ions 166

3.2 Description of Apparently Non-Nernstian Response Slopes of Ion-Selective Electrodes 168

4 Modeling Using the Multispecies Approximation 170

4.1 The Essence of the Multispecies Approximation 170

4.2 System of Equations for Implementation of the Multispecies Model 171

4.3 Selected Results of Modeling Using the Multispecies Approximation 174

5 Diffusion Layer Model:Example of Local Equilibrium Modeling 179

6 Advanced Nonequilibrium Modeling in Real Time and Space 181

7 Conclusions 194

Acknowledgments 194

References 195

6 MODELS OF RESPONSE IN MIXED-ION SOLUTIONS FOR ION-SENsITIVE FIELD-EFFECT TRANSISTORS&Sergio Bermejo 201

1 Introduction 201

2 ISFET Basics 202

2.1 Principles of Electrochemical Operation 202

2.2 Structures and Materials 206

3 Electrochemical Models 211

3.1 The Metal-Solution Junction 211

3.2 The Oxide--Solution Junction 219

3.3 Membrane-Based ISFETs 225

3.4 A General Approach for ISFET Modeling in Mixed-Ion Solutions 232

4 Conclusions 242

Appendix:SPICE Models 242

References 243