Chapter Seven:Representations and duality of compact groups 1
Section 27.Unitary representations of compact groups 1
Section 28.More about representations of compact groups 60
Section 29.Miscellaneous facts about representations 115
Section 30.The TANNAKA-KREǐN duality theorem 156
Chapter Eight:Fourier transforms 209
Section 31.?2 and?p transforms 209
Section 32.Positive-definite functions and factorization theorems 253
Section 33.BOCHNER's theorem 291
Chapter Nine:Analysis on compact groups 328
Section 34.Absolutely convergent Fourier series on compact groups 328
Section 35.Multipliers over compact groups 367
Section 36.More on multipliers over compact groups 390
Section 37.Lacunarity for compact groups 415
Section 38.Ideal theory for certain convolution algebras on compact groups 449
Chapter Ten:Spectral synthesis 484
Section 39.Ideals in regular commutative Banach algebras 484
Section 40.Preliminaries on spectral sets 522
Section 41.Some special sets 552
Section 42.The failure of spectral synthesis in?1(G) 576
Chapter Eleven:Miscellany 606
Section 43.?p transforms and maximal functions 606
Section 44.Pointwise summability for Fourier transforms 631
Appendix D:Tensor products and yon Neumann norms 680
Appendix E:Miscellaneous facts from functional analysis 710
Addendum to Volume I 726
Bibliography 729
Index of symbols 752
Index of authors and terms 756