1.INTRODUCTION 1
1.1 CATALYSIS 1
1.2 HOMOGENEOUS CATALYSIS 6
1.3 HISTORICAL NOTES ON HOMOGENEOUS CATALYSIS 7
1.4 CHARACTERISATION OF THE CATALYST 8
1.5 LIGAND EFFECTS 10
1.5.1 Phosphines and phosphites:electronic effects 10
1.5.2 Phosphines and phosphites:steric effects 12
1.5.3 Linear Free Energy Relationships 14
1.5.4 Phosphines and phosphites:bite angle effects 16
1.6 LIGANDS ACCORDING TO DONOR ATOMS 20
1.6.1 Anionic and neutral hydrocarbyl groups 20
1.6.2 Alkoxy and imido groups as anionic ligands 21
1.6.3 Amines,imines,oxazolines and related ligands 21
1.6.4 Phosphines,phosphites,phosphorus amides,phospholes and related ligands 23
1.6.5 Carbenes,carbon monoxide 24
1.6.6 Common anions 25
2.ELEMENTARY STEPS 29
2.1 CREATION OF A"VACANT"SITE AND CO-ORDINATION OF THE SUBSTRATE 29
2.2 INSERTION VERSUS MIGRATION 30
2.3 β-ELIMINATION AND DE-INSERTION 35
2.4 OXIDATIVE ADDITION 36
2.5 REDUCTIVE ELIMINATION 39
2.6 α-ELIMINATION REACTIONS 41
2.7 CYCLOADDITION REACTIONS INVOLVING A METAL 42
2.8 ACTIVATION OF A SUBSTRATE TOWARD NUCLEOPHILIC ATTACK 44
2.8.1 Alkenes 44
2.8.2 Alkynes 45
2.8.3 Carbon monoxide 45
2.8.4 Other substrates 46
2.9 σ-BOND METATHESIS 48
2.10 DIHYDROGEN ACTIVATION 48
2.11 ACTIVATION BY LEWIS ACIDS 50
2.11.1 Diels-Alder additions 51
2.11.2 Epoxidation 51
2.11.3 Ester condensation 52
2.12 CARBON-TO-PHOSPHORUS BOND BREAKING 52
2.13 CARBON-TO-SULFUR BOND BREAKING 55
2.14 RADICAL REACTIONS 57
3.KINETICS 63
3.1 INTRODUCTION 63
3.2 TWO-STEP REACTION SCHEME 63
3.3 SIMPLIFICATIONS OF THE RATE EQUATION AND THE RATE-DETERMINING STEP 64
3.4 DETERMINING THE SELECTIVITY 68
3.5 COLLECTION OF RATE DATA 71
3.6 IRREGULARITIES IN CATALYSIS 72
4.HYDROGENATION 75
4.1 WILKINSON'S CATALYST 75
4.2 ASYMMETRIC HYDROGENATION 77
4.2.1 Introduction 77
4.2.2 Cinnamic acid derivatives 79
4.2.3 Chloride versus weakly coordinating anions;alkylphosphines versus arylphosphines 86
4.2.4 Incubation times 86
4.3 OVERVIEW OF CHIRAL BIDENTATE LIGANDS 86
4.3.1 DuPHOS 86
4.3.2 BINAP catalysis 87
4.3.3 Chiral ferrocene based ligands 89
4.4 MONODENTATE LIGANDS 90
4.5 NON-LINEAR EFFECTS 93
4.6 HYDROGEN TRANSFER 94
5.ISOMERISATION 101
5.1 HYDROGEN SHIFTS 101
5.2 ASYMMETRIC ISOMERISATION 103
5.3 OXYGEN SHIFTS 105
6.CARBONYLATION OF METHANOL AND METHYL ACETATE 109
6.1 ACETIC ACID 109
6.2 PROCESS SCHEME MONSANTO PROCESS 114
6.3 ACETIC ANHYDRIDE 116
6.4 OTHER SYSTEMS 118
6.4.1 Higher alcohols 118
6.4.2 Phosphine-modified rhodium catalysts 119
6.4.3 Other metals 122
7.COBALT CATALYSED HYDROFORMYLATION 125
7.1 INTRODUCTION 125
7.2 THERMODYNAMICS 126
7.3 COBALT CATALYSED PROCESSES 126
7.4 COBALT CATALYSED PROCESSES FOR HIGHER ALKENES 128
7.5 KUHLMANN COBALT HYDROFORMYLATION PROCESS 130
7.6 PHOSPHINE MODIFIED COBALT CATALYSTS:THE SHELL PROCESS 131
7.7 COBALT CARBONYL PHOSPHINE COMPLEXES 132
7.7.1 Carbonyl species 132
7.7.2 Phosphine derivatives 135
8.RHODIUM CATALYSED HYDROFORMYLATION 139
8.1 INTRODUCTION 139
8.2 TRIPHENYLPHOSPHINE AS THE LIGAND 141
8.2.1 The mechanism 141
8.2.2 Ligand effects and kinetics 144
8.2.3 Regioselectivity 147
8.2.4 Process description,rhodium-tpp 149
8.2.5 Two-phase process,tppts:Ruhrchemie/Rh?ne-Poulenc 150
8.2.6 One-phase catalysis,two-phase separation 152
8.3 DIPHOSPHINES AS LIGANDS 153
8.3.1 Xantphos ligands:tuneable bite angles 155
8.4 PHOSPHITES AS LIGANDS 161
8.4.1 Electronic effects 161
8.4.2 Phosphites:steric effects 162
8.5 DIPHOSPHITES 163
8.6 ASYMMETRIC HYDROFORMYLATION 166
8.6.1 Rhodium catalysts:diphosphites 166
8.6.2 Rhodium catalysts:phosphine-phosphite ligands 168
9.ALKENE OLIGOMERISATION 175
9.1 INTRODUCTION 175
9.2 SHELL-HIGHER-OLEFINS-PROCESS 176
9.2.1 Oligomerisation 176
9.2.2 Separation 180
9.2.3 Purification,isomerisation,and metathesis 180
9.2.4 New catalysts 181
9.3 ETHENE TRIMERISATION 184
9.4 OTHER ALKENE OLIGOMERISATION REACTIONS 187
10.PROPENE POLYMERISATION 191
10.1 INTRODUCTION TO POLYMER CHEMISTRY 191
10.1.1 Introduction to Ziegler Natta polymerisation 193
10.1.2 History of homogeneous catalysts 196
10.2 MECHANISTIC INVESTIGATIONS 199
10.2.1 Chain-end control:syndiotactic polymers 199
10.2.2 Chain-end control:isotactic polymers 201
10.3 ANALYSIS BY 13 C NMR SPECTROSCOPY 202
10.3.1 Introduction 202
10.3.2 Chain-end control 204
10.3.3 Site control mechanism 204
10.4 THE DEVELOPMENT OF METALLOCENE CATALYSTS 206
10.4.1 Site control:isotactic polymers 206
10.4.2 Site control:syndiotactic polymers 209
10.4.3 Double stereoselection:chain-end and site control 211
10.5 AGOSTIC INTERACTIONS 212
10.6 THE EFFECT OF DIHYDROGEN 214
10.7 FURTHER WORK USING PROPENE AND OTHER ALKENES 215
10.8 NON-METALLOCENE ETM CATALYSTS 220
10.9 LATE TRANSITION METAL CATALYSTS 222
11.HYDROCYANATION OF ALKENES 229
11.1 THE ADIPONITRILE PROCESS 229
11.2 LIGAND EFFECTS 233
12.PALLADIUM CATALYSED CARBONYLATIONS OF ALKENES 239
12.1 INTRODUCTION 239
12.2 POLYKETONE 239
12.2.1 Background and history 239
12.2.2 Elementary steps:initiation 241
12.2.3 Elementary steps:migration reactions 244
12.2.4 Elementary steps:chain termination,chain transfer 250
12.2.5 Elementary steps:ester formation as chain termination 252
12.3 LIGAND EFFECTS ON CHAIN LENGTH 256
12.3.1 Polymers 256
12.3.2 Ligand effects on chain length:Propanoate 258
12.3.3 Ligand effects on chain length:Oligomers 261
12.4 ETHENE/PROPENE/CO TERPOLYMERS 262
12.5 STEREOSELECTIVE STYRENE/CO COPOLYMERS 263
13.PALLADIUM CATALYSED CROSS-COUPLING REACTIONS 271
13.1 INTRODUCTION 271
13.2 ALLYLIC ALKYLATION 273
13.3 HECK REACTION 281
13.4 CROSS-COUPLING REACTION 286
13.5 HETEROATOM-CARBON BOND FORMATION 290
13.6 SUZUKI REACTION 294
14.EPOXIDATION 299
14.1 ETHENE AND PROPENE OXIDE 299
14.2 ASYMMETRIC EPOXIDATION 301
14.2.1 Introduction 301
14.2.2 Katsuki-Sharpless asymmetric epoxidation 301
14.2.3 The Jacobsen asymmetric epoxidation 305
14.3 ASYMMETRIC HYDROXYLATION OF ALKENES WITH OSMIUM TETROXIDE 308
14.3.1 Stoichiometric reactions 308
14.3.2 Catalytic reactions 312
14.4 JACOBSEN ASYMMETRIC RING-OPENING OF EPOXIDES 314
14.5 EPOXIDATIONS WITH DIOXYGEN 316
15.OXIDATION WITH DIOXYGEN 319
15.1 INTRODUCTION 319
15.2 THE WACKER REACTION 320
15.3 WACKER TYPE REACTIONS 324
15.4 TEREPHTHALIC ACID 327
15.5 PPO 332
16.ALKENE METATHESIS 337
16.1 INTRODUCTION 337
16.2 THE MECHANISM 339
16.3 REACTION OVERVIEW 343
16.4 WELL-CHARACTERISED TUNGSTEN AND MOLYBDENUM CATALYSTS 344
16.5 RUTHENIUM CATALYSTS 346
16.6 STEREOCHEMISTRY 349
16.7 CATALYST DECOMPOSITION 350
16.8 ALKYNES 352
16.9 INDUSTRIAL APPLICATIONS 354
17.ENANTIOSELECTIVE CYCLOPROPANATION 359
17.1 INTRODUCTION 359
17.2 COPPER CATALYSTS 360
17.3 RHODIUM CATALYSTS 364
17.3.1 Introduction 364
17.3.2 Examples of rhodium catalysts 367
18.HYDROSILYLATION 371
18.1 INTRODUCTION 371
18.2 PLATINUM CATALYSTS 373
18.3 ASYMMETRIC PALLADIUM CATALYSTS 378
18.4 RHODIUM CATALYSTS FOR ASYMMETRIC KETONE REDUCTION 380
19.C-H FUNCTIONALISATION 387
19.1 INTRODUCTION 387
19.2 ELECTRON-RICH METALS 389
19.3 HYDROGEN TRANSFER REACTIONS OF ALKANES 394
19.4 BORYLATION OF ALKANES 395
19.5 THE MURAI REACTION 396
19.6 CATALYTIC σ-BOND METATHESIS 397
19.7 ELECTROPHILIC CATALYSTS 397
SUBJECT INDEX 403