《美国数学建模竞赛同济大学优秀论文选评 上》PDF下载

  • 购买积分:10 如何计算积分?
  • 作  者:同济大学数学建模组主编
  • 出 版 社:上海:同济大学出版社
  • 出版年份:2014
  • ISBN:9787560856285
  • 页数:206 页
图书介绍:截止到2013年,同济大学在美国数学建模竞赛中获得Ben Fusaro奖及入围奖1项,一等奖13项,二等奖25项,三等奖42项。本书正是精选了这些获奖论文中具有代表性的论文,每篇论文都按照竞赛论文的写作要求包含了论文的摘要、问题重述、问题分析、模型假设、模型建立和求解、模型分析和检验、模型评价等内容,在论文前列出原题,论文后给出了简要的点评,以供读者参考。本书可供参加美国数学建模竞赛的学生学习和阅读,对于从事数学建模课程教学及指导工作的老师也有一定的参考价值,也可供相关学科的技术人员参考。

第一部分 MCM 2013年A题 3

第一章 赛题:The Ultimate Brownie Pan 3

第二章 论文1:The Ultimate Brownie Pan 5

2.1 Introduction 6

2.2 Assumptions 7

2.3 Notations 8

2.4 Part Ⅰ 8

2.5 Part Ⅱ 18

2.6 Strengths and Weaknesses 22

2.7 Future Work 22

2.8 点评 23

第三章 论文2:The Ultimate Brownie Pan 24

3.1 Introduction 25

3.2 Problem Analysis 25

3.3 Assumptions 26

3.4 Models 27

3.5 Results 34

3.6 Analysis of Models 39

3.7 点评 40

第四章 论文3:The Ultimate Brownie Pan 41

4.1 Introduction 42

4.2 Restatement of the Problem 42

4.3 Problem Analysis 43

4.4 Model Assumptions 44

4.5 Model and Solution 44

4.6 Evaluation of the Model 61

4.7 Future Works 61

4.8 点评 62

第五章 论文4:Heat Distribution and the Ultimate Brownie Pan 63

5.1 Introduction 64

5.2 Heat Distribution Problem—the Models of Heat Distribution Across Pans 65

5.3 The Pan-Shape-Choosing Problem 78

5.4 点评 85

第六章 论文5:Ultimate Brownie Pan,Live in a Delicious Way 86

6.1 Introduction and Backgrounds 87

6.2 Terminology and Definitions 87

6.3 Assumptions 88

6.4 Temperature Distribution Model 89

6.5 Solutions to Requirements 96

6.6 Sensitivity Analysis 102

6.7 Strengths and Weaknesses 103

6.8 点评 104

第七章 论文6:The Ultimate Brownie Pan 105

7.1 Introduction 106

7.2 Assumptions 107

7.3 Heat Analysis 107

7.4 Unevenness of Distribution 112

7.5 Arrangement Problem 114

7.6 Weight Analysis 118

7.7 Sensitivity Analysis 121

7.8 Conclusions 121

7.9 Strengths and Weaknesses 122

7.1 0点评 123

第二部分 MCM 2011年A题 127

第八章 赛题:Snowboard Course 127

第九章 论文1:Research of the Snowboard Course 128

9.1 Introduction 128

9.2 Scheme 1 129

9.3 Scheme 2 133

9.4 Scheme 3 134

9.5 Strengths and Weaknesses 135

9.6 Conclusions 135

9.7 点评 136

第十章 论文2:Snowboard Course:the Optimization of the Halfpipe Shape 138

10.1 Introduction 139

10.2 Assumptions 141

10.3 Variable Definition 141

10.4 Analysis of the Problem 142

10.5 The Model Results 145

10.6 Improve the Model 148

10.7 Conclusions 149

10.8 Strengths and Weaknesses 150

10.9 点评 150

第十一章 论文3:A Solution to Snowboard Course 152

11.1 Introduction 153

11.2 Analysis 153

11.3 Variables and Assumption 156

11.4 Model 158

11.5 Model Optimization 166

11.6 Practical Application 168

11.7 Conclusion 169

11.8 Appendix 171

11.9 点评 171

第三部分 MCM 2010年A题 175

第十二章 赛题:The Sweet Spot 175

第十三章 论文1:Hit the ball,hit the sweet spot 176

13.1 Introduction 177

13.2 General Assumptions 178

13.3 The Collision Model 178

13.4 Two Definitions of the Sweet Spot 179

13.5 Verification of the Model 180

13.6 Corking the Bat 181

13.7 The Vertical Sweet Zone 185

13.8 Metal Bats 187

13.9 点评 189

第十四章 论文2:The Sweet Spot 190

14.1 Restatement of the Problem 191

14.2 Terms and Ambiguous Words 191

14.3 Ambiguous Words 191

14.4 Assumptions 191

14.5 The COP Model 192

14.6 The Plane-parallel Motion Model 193

14.7 The Plane-parallel Motion Model of a Corked Bat 199

14.8 Dynamics of Swinging a Bat 202

14.9 The Comprehensive Consideration 204

14.10 点评 206