《经济数学基础与应用》PDF下载

  • 购买积分:14 如何计算积分?
  • 作  者:康永强主编;岑苑君,邱仰聪副主编;李宏远主审
  • 出 版 社:北京:电子工业出版社
  • 出版年份:2012
  • ISBN:9787121179686
  • 页数:426 页
图书介绍:本书主要内容包括: 经济中常见的数学模型——经济函数,无限变化的函数模型——极限与经济函数,经济分析的基本工具——导数、微分,导数在经济上的应用问题——边际、弹性、最值、函数形态,微分的逆运算问题——不定积分,求总量或变化量的问题——定积分及其经济应用,偶然中的必然——随机事件与概率,随机现象的函数化——随机变量及其分布,随机变量的数字特征——数学期望和方差,数理统计的基本内容,矩阵,线性方程组,用MATLAB数学软件来进行数学计算。

第一模块 一元函数微分学及其经济应用 3

第1章 经济中常见的数学模型——经济函数 3

1.1 经济函数及其模型的建立 3

1.1.1 需求量、供给量和价格之间的关系 4

1.1.2 盈亏平衡点 6

1.1.3 复利问题 9

1.1.4 贴现问题 12

【能力训练1.1】 13

1.2 函数——变量之间依存关系的数学模型 14

1.2.1 函数概念的起源 14

1.2.2 函数的概念 15

1.2.3 反函数——逆向思维的实例 19

1.2.4 基本初等函数 20

1.2.5 复合函数 21

【能力训练1.2】 23

学法建议 24

【综合能力训练1】 25

【数学文化聚焦】无处不在的数学技术 26

第2章 无限变化的函数模型——极限与经济函数 28

2.1 极限思想概述 28

2.1.1 极限思想介绍 28

2.1.2 微积分理论的创立 30

【能力训练2.1】 31

2.2 数列极限、无穷级数和乘数效应 31

2.2.1 数列极限与反复学习问题 31

2.2.2 无穷级数与乘数效应 33

【能力训练2.2】 37

2.3 变化趋势的函数模型——极限 37

2.3.1 x→∞时,f(x)的极限 37

2.3.2 x→x0时,函数f(x)的极限 39

2.3.3 函数f(x)的连续性 42

2.3.4 无穷小量与弹球模型 45

2.3.5 无穷大与高速问题 47

【能力训练2.3】 50

2.4 怎样计算极限 51

2.4.1 极限的四则运算法则 51

2.4.2 计算极限的基本方法 51

【能力训练2.4】 55

2.5 经济中的极限问题 56

2.5.1 连续复利 56

2.5.2 实际利率和名义利率 58

2.5.3 年金和永续年金 59

【能力训练2.5】 63

学法建议 64

【综合能力训练2】 65

【数学文化聚焦】哲学角度认识极限法 66

第3章 经济分析的基本工具——导数、微分 67

3.1 函数的局部变化率——导数 67

3.1.1 微积分的创立 67

3.1.2 函数y=f(x)在点x0处的导数——导数值 68

3.1.3 平面曲线的斜率及切线问题 70

3.1.4 函数y=f(x)在区间(a,b)内的导数——导函数 71

【能力训练3.1】 73

3.2 求导数的方法 73

3.2.1 导数基本公式 73

3.2.2 导数的四则运算法则 75

3.2.3 复合函数求导法则 76

3.2.4 隐函数求导法 80

3.2.5 高阶导数 83

3.2.6 反函数的导数 84

【能力训练3.2】 85

3.3 微分及其计算 86

3.3.1 微分的定义及其计算 86

3.3.2 微分的近似计算 89

【能力训练3.3】 90

3.4 二元函数的偏导数 91

3.4.1 空间直角坐标系与二元函数 91

3.4.2 二元函数的偏导数 94

3.4.3 二元函数的二阶偏导数 95

【能力训练3.4】 96

学法建议 96

【综合能力训练3】 97

【数学文化聚焦】贝克莱悖论与第二次数学危机 98

第4章 导数在经济上的应用问题——边际、弹性、最值、函数形态 99

4.1 函数的形态分析——函数的单调性和极值、凹向性和拐点 100

4.1.1 函数的单调性 100

4.1.2 函数的极值——函数的局部性质 102

4.1.3 函数的最大值与最小值——函数的整体性质 105

4.1.4 函数的凹向性与拐点 108

4.1.5 曲线的渐近线和函数作图 112

【能力训练4.1】 114

4.2 边际分析 115

4.2.1 边际成本 115

4.2.2 边际收益 115

4.2.3 边际利润 116

【能力训练4.2】 116

4.3 弹性分析 117

4.3.1 需求弹性 118

4.3.2 收益弹性 120

【能力训练4.3】 122

4.4 经济中的最优化问题 122

4.4.1 最大利润问题 122

4.4.2 最小平均成本问题 123

4.4.3 允许缺货的批量问题 124

【能力训练4.4】 127

4.5 偏导数在经济分析中的应用 127

4.5.1 偏边际成本 127

4.5.2 二元经济函数的极值 128

【能力训练4.5】 130

4.6 计算未定式极限的一般方法——洛必达法则 131

【能力训练4.6】 133

学法建议 133

【综合能力训练4】 135

【数学文化聚焦】将数学引入经济学的第一人——保罗·萨缪尔森 135

第二模块 一元函数积分学及其经济应用 141

第5章 微分的逆运算问题——不定积分 141

5.1 不定积分及其性质 142

5.1.1 积分学的创立 142

5.1.2 逆向思维又一例——原函数与不定积分的概念 142

5.1.3 不定积分的性质与基本积分公式 144

5.1.4 求不定积分的基本方法 146

【能力训练5.1】 147

5.2 凑微分法 148

【能力训练5.2】 153

5.3 分部积分法 154

5.3.1 分部积分公式 154

5.3.2 如何正确使用分部积分公式 154

【能力训练5.3】 156

学法建议 157

【综合能力训练5】 158

【数学文化聚焦】数学大师丘成桐的数学强国梦 158

第6章 求总量或变化量的问题——定积分及其经济应用 160

6.1 定积分的概念 161

6.1.1 定积分的起源 161

6.1.2 定积分的定义 161

6.1.3 定积分的性质 163

6.1.4 如何求定积分∫b af(x)dx的值 164

【能力训练6.1】 164

6.2 计算定积分的一般方法——换元积分法和分部积分法 165

6.2.1 定积分的换元积分法 165

6.2.2 定积分的分部积分法 168

【能力训练6.2】 168

6.3 定积分概念的拓展——无穷区间上的广义积分 169

【能力训练6.3】 171

6.4 定积分的应用——求平面图形的面积 171

6.4.1 定积分的微元法 171

6.4.2 平面图形的面积 172

【能力训练6.4】 173

6.5 定积分在经济分析中的应用 173

6.5.1 边际函数和经济函数 173

6.5.2 资金流在连续复利计息下的现值与将来值 175

6.5.3 消费者剩余和生产者剩余 177

6.5.4 洛伦兹曲线与基尼系数 178

【能力训练6.5】 180

学法建议 180

【综合能力训练6】 181

【数学文化聚焦】谁先创立微积分 182

第三模块 描述随机问题的方法——概率论 185

第7章 偶然中的必然——随机事件与概率 185

7.1 随机事件的概念及运算 186

7.1.1 随机试验和样本空间 186

7.1.2 随机事件 188

7.1.3 基本事件和复合事件 188

7.1.4 事件间的关系与运算 189

【能力训练7.1】 191

【数学文化聚焦】概率论的起源 191

7.2 随机事件的概率 192

7.2.1 概率是什么 192

7.2.2 概率的定义 193

7.2.3 概率的基本性质 194

【能力训练7.2】 195

【数学文化聚焦】偶然中的必然 196

7.3 概率运算(1)——加法公式和乘法公式 197

7.3.1 概率加法公式 197

7.3.2 条件概率 198

7.3.3 概率乘法公式 201

【能力训练7.3】 202

【数学文化聚焦】蒙提霍尔问题 203

7.4 概率运算(2)——全概率公式和贝叶斯公式 205

7.4.1 全概率公式 205

7.4.2 贝叶斯公式 206

【能力训练7.4】 210

【数学文化聚焦】贝叶斯统计法 211

7.5 事件的独立性 212

7.5.1 两个事件的独立性 212

7.5.2 三个事件的相互独立性 213

【能力训练7.5】 215

【数学文化聚焦】蒲丰投针问题 216

学法建议 217

【综合能力训练7】 219

【数学文化聚焦】彩票中奖的可能性分析 220

第8章 随机现象的函数化——随机变量及其分布 222

8.1 随机变量及其分布函数 223

8.1.1 随机变量的概念 223

8.1.2 随机事件与随机变量的关系 223

8.1.3 随机变量的分类 224

8.1.4 分布函数及其基本性质 224

8.1.5 随机变量的独立性 225

【能力训练8.1】 225

【数学文化聚焦】神奇的功勋 225

8.2 离散型随机变量及其分布 226

8.2.1 离散型随机变量的概率分布及基本性质 226

8.2.2 常用离散型随机变量的分布 229

【能力训练8.2】 234

【数学文化聚焦】从死亡线上生还的人 235

8.3 连续型随机变量及其分布 237

8.3.1 连续型随机变量的概率密度及其基本性质 237

8.3.2 连续型随机变量的概率密度与分布函数的关系 237

8.3.3 常用连续型随机变量的分布 238

【能力训练8.3】 240

【数学文化聚焦】概率论的应用 241

8.4 正态分布 242

8.4.1 正态分布概念 242

8.4.2 标准正态分布 243

8.4.3 一般正态分布与标准正态分布的关系 244

【能力训练8.4】 246

【数学文化聚焦】3σ规则 247

学法建议 248

【综合能力训练8】 250

【数学文化聚焦】数学王子——高斯 251

第9章 随机变量的数字特征——数学期望和方差 253

9.1 数学期望 254

9.1.1 数学期望的概念 254

9.1.2 离散型随机变量的数学期望(均值) 255

9.1.3 连续型随机变量的数学期望 257

9.1.4 数学期望的性质 259

【能力训练9.1】 260

9.2 方差 260

9.2.1 方差的概念 260

9.2.2 计算方差的简捷公式 261

9.2.3 方差的性质 264

9.2.4 常用的随机变量分布及其数学期望和方差 265

【能力训练9.2】 265

学法建议 266

【综合能力训练9】 267

【数学文化聚焦】投资规律——不要把鸡蛋放在同一个篮子中 268

第四模块 部分刻画整体的方法——数理统计初步 271

第10章 数理统计的基本内容 271

10.1 总体和样本 272

10.1.1 总体和总体的分布 272

10.1.2 样本与样本值 272

10.1.3 统计推断问题简述 273

10.1.4 总体和样本的数字特征 273

【能力训练10.1】 274

【数学文化聚焦】统计的若干应用 274

10.2 统计量及其分布 275

10.2.1 统计量 275

10.2.2 临界值 276

10.2.3 常见统计量的分布 276

【能力训练10.2】 280

【数学文化聚焦】伯努利家族的贡献 280

10.3 参数估计 281

10.3.1 点估计 281

10.3.2 区间估计 282

【能力训练10.3】 288

【数学文化聚焦】现代企业的6σ管理法 289

10.4 假设检验(1)——双侧检验 289

10.4.1 假设检验的原理 289

10.4.2 假设检验的基本方法 291

【能力训练10.4】 295

【数学文化聚焦】生日悖论 295

10.5 假设检验(2)——单侧检验 296

【能力训练10.5】 299

学法建议 301

【综合能力训练10】 303

【数学文化聚焦】诺贝尔为什么没有设立数学奖? 304

第五模块 矩阵及线性方程组 307

第11章 矩阵 307

11.1 矩阵的定义 308

11.1.1 矩阵的概念 308

11.1.2 几类特殊的矩阵 311

【能力训练11.1】 313

11.2 矩阵的运算 313

11.2.1 矩阵的相等 313

11.2.2 矩阵的加法运算 313

11.2.3 矩阵的数乘运算 315

11.2.4 矩阵的乘法 316

11.2.5 矩阵的转置 318

【能力训练11.2】 320

11.3 矩阵的秩 322

11.3.1 矩阵的初等行变换 322

11.3.2 阶梯形矩阵 322

11.3.3 行简化阶梯形矩阵 323

11.3.4 矩阵的秩 324

【能力训练11.3】 325

11.4 逆矩阵 326

11.4.1 逆矩阵的定义 326

11.4.2 用初等行变换求逆矩阵 327

11.4.3 线性方程组的矩阵解法 328

【能力训练11.4】 331

【数学文化聚焦】矩阵密码问题 332

学法建议 333

【综合能力训练11】 333

第12章 线性方程组 335

12.1 n元线性方程组和高斯消元法 336

12.1.1 n元线性方程组的基本概念 336

12.1.2 高斯消元法 338

【能力训练12.1】 342

12.2 线性方程组解的判定 343

12.2.1 n元非齐次线性方程组解的判定 343

12.2.2 n元齐次线性方程组解的判定 346

【能力训练12.2】 349

【数学文化聚焦】线性方程组在交通流量问题方面的应用 350

学法建议 352

【综合能力训练12】 352

第六模块 数学实验 357

第13章 用MATLAB数学软件进行数学计算 357

13.1 MATLAB简介 357

实验一 MATLAB操作入门 357

实验二 变量与函数 359

13.2 函数的MATLAB计算与作图 361

实验三 利用MATLAB进行基本数学运算 361

实验四 利用MATLAB绘制平面曲线的图形 362

13.3 利用MATLAB计算一元函数微积分问题 364

实验五 求解函数极限 364

实验六 求解函数导数 366

实验七 导数的应用一 368

实验八 导数的应用二 370

实验九 求解函数积分 374

实验十 积分的应用 376

13.4 利用MATLAB进行矩阵运算和线性方程组求解 377

实验十一 矩阵运算 377

实验十二 求解线性方程组 380

13.5 利用MATLAB计算概率论及数理统计的问题 382

实验十三 计算随机变量的概率分布 382

实验十四 计算随机变量的数学期望和方差 386

实验十五 参数估计 388

附录A 泊松分布概率值表 391

附录B 标准正态分布函数数值表 393

附录C t分布表 394

附录D X2分布表 395

附录E 能力训练参考答案 397

参考文献 426