《抽象调和分析 第1卷 第2版》PDF下载

  • 购买积分:16 如何计算积分?
  • 作  者:(美)休伊特(HewittE.)著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2014
  • ISBN:9787510070334
  • 页数:519 页
图书介绍:本书是Springer专著系列之一,分为上下两卷,这是第一卷。书的内容以作者在Washington大学和Uppsala大学的教程为基础,增加扩充整理而来的。旨在为实分析、集理论拓扑和代数专业的研究生提供可读的教程,也就是说读者应该对基本集合理论、集理论拓扑和代数有一定的了解。从基本的符号、术语、群理论、和拓扑开始,介绍了拓扑群理论基础、局部紧空间上的积分和不变泛函。在本书的结尾处讲述了卷积、群表示、特征、局部紧阿贝尔群的对偶。读者对象:数学专业的研究生和相关的科研人员。

Chapter One:Preliminaries 1

Section 1.Notation and terminology 1

Section 2.Group theory 3

Section 3.Topology 9

Chapter Two:Elements of the theory of topological groups 15

Section 4.Basic definitions and facts 16

Section 5.Subgroups and quotient groups 32

Section 6.Product groups and projective limits 52

Section 7.Properties of topological groups involving connectedness 60

Section 8.Invariant pseudo-metrics and separation axioms 67

Section 9.Structure theory for compact and locally compact Abelian groups 83

Section 10.Some special locally compact Abelian groups 106

Chapter Three:Integration on locally compact spaces 117

Section 11.Extension of a linear functional and construction of a measure 118

Section 12.The spaces ?p(X)(1?p?∞) 135

Section 13.Integration on product spaces 150

Section 14.Complex measures 166

Chapter Four:Invariant functionals 184

Section 15.The Haar integral 184

Section 16.More about Haar measure 215

Section 17.Invariant means defined for all bounded functions 230

Section 18.Invariant means on almost periodic functions 245

Chapter Five:Convolutions and group representations 261

Section 19.Introduction to convolutions 262

Section 20.Convolutions of functions and measures 283

Section 21.Introduction to representation theory 311

Section 22.Unitary representations of locally compact groups 335

Chapter Six:Characters and duality of locally compact Abelian groups 355

Section 23.The character group of a locally compact Abelian group 355

Section 24.The duality theorem 376

Section 25.Special structure theorems 399

Section 26.Miscellaneous consequences of the duality theorem 426

Appendix A:Abelian groups 439

B:Topological linear spaces 451

C:Introduction to normed algebras 469

Bibliography 492

Index of symbols 506

Index of authors and terms 509