第一部分 一元微积分 1
第一章 函数 1
第一节 函数的概念 1
第二节 函数的特性 3
第三节 初等函数 4
习题一 12
第二章 极限与连续 13
第一节 极限的概念 13
第二节 极限的四则运算 19
第三节 两个重要极限 20
第四节 函数的连续性 22
习题二 28
第三章 导数和微分 30
第一节 导数的概念 30
第二节 导数的基本公式与运算法则 34
第三节 高阶导数 39
第四节 隐函数的导数 41
第五节 函数的微分 42
第六节 导数的应用 46
习题三 55
第四章 积分 58
第一节 不定积分的概念和性质 58
第二节 积分基本公式和积分运算法则 60
第三节 换元积分法 61
第四节 分部积分法 65
第五节 定积分概念 66
第六节 定积分的计算 70
第七节 定积分的应用 73
习题四 77
第二部分 线性代数简介 80
第五章 行列式 80
第一节 行列式的定义 80
第二节 行列式的性质与计算 85
第三节 克莱姆法则 89
习题五 93
第六章 矩阵 94
第一节 矩阵的概念 94
第二节 矩阵的运算 96
第三节 矩阵的简单应用 99
习题六 102
第七章 矩阵的初等行变换与线性方程组 103
第一节 用矩阵的初等行变换解线性方程组 103
第二节 齐次线性方程组的解 107
习题七 111
第三部分 概率统计初步 112
第八章 随机事件及其概率 112
第一节 随机现象与随机事件 112
第二节 随机事件的概率 116
第三节 概率的乘法公式、全概率公式和贝叶斯公式 122
第四节 事件的独立性和二项概率公式 127
习题八 132
第九章 随机变量和一元正态分布 134
第一节 随机变量 134
第二节 离散型随机变量 135
第三节 连续型随机变量 137
习题九 144
附录一 标准正态分布函数值表 145
附录二 习题答案 146