《有限温度场论原理和应用 原书第2版》PDF下载

  • 购买积分:14 如何计算积分?
  • 作  者:(美)卡普斯塔著
  • 出 版 社:北京:世界图书北京出版公司
  • 出版年份:2011
  • ISBN:9787510029660
  • 页数:428 页
图书介绍:本书旨在为热量子场论方向的读者提供入门认识,也涉及不少该领域的深刻议题。书中展示了该领域的最新进展和成果,有限温度和密度下研究相对论场论的基本公式和理论技巧。

1 Review of quantum statistical mechanics 1

1.1 Ensembles 1

1.2 One bosonic degree of freedom 3

1.3 One fermionic-degree of freedom 5

1.4 Noninteracting gases 6

1.5 Exercises 10

Bibliography 11

2 Functional integral representation of the partition function 12

2.1 Transition amplitude for bosons 12

2.2 Partition function for bosons 15

2.3 Neutral scalar field 16

2.4 Bose-Einstein condensation 19

2.5 Fermions 23

2.6 Remarks on functional integrals 30

2.7 Exercises 31

Reference 31

Bibliography 31

3 Interactions and diagrammatic techniques 33

3.1 Perturbation expansion 33

3.2 Diagrammatic rules for λφ4 theory 34

3.3 Propagators 38

3.4 First-order corrections to ∏ and ln Z 41

3.5 Summation of infrared divergences 45

3.6 Yukawa theory 47

3.7 Remarks on real time perturbation theory 51

3.8 Exercises 53

References 54

Bibliography 54

4 Renormalization 55

4.1 Renormalizing λφ4 theory 55

4.2 Renormalization group 57

4.3 Regularization schemes 60

4.4 Application to the partition function 61

4.5 Exercises 63

References 63

Bibliography 63

5 Quantum electrodynamics 64

5.1 Quantizing the electromagnetic field 64

5.2 Blackbody radiation 68

5.3 Diagrammatic expansion 70

5.4 Photon self-energy 71

5.5 Loop corrections to ln Z 74

5.6 Exercises 82

References 83

Bibliography 83

6 Linear response theory 84

6.1 Linear response to an external field 84

6.2 Lehmann representation 87

6.3 Screening of static electric fields 90

6.4 Screening of a point charge 94

6.5 Exact formula for screening length in QED 97

6.6 Collective excitations 100

6.7 Photon dispersion relation 101

6.8 Electron dispersion relation 105

6.9 Kubo formulae for viscosities and conductivities 107

6.10 Exercises 114

References 115

Bibliography 115

7 Spontaneous symmetry breaking and restoration 117

7.1 Charged scalar field with negative mass-squared 117

7.2 Goldstone's theorem 123

7.3 Loop corrections 125

7.4 Higgs model 130

7.5 Exercises 133

References 133

Bibliography 134

8 Quantum chromodynamics 135

8.1 Quarks and gluons 136

8.2 Asymptotic freedom 139

8.3 Perturbative evaluation of partition function 146

8.4 Higher orders at finite temperature 149

8.5 Gluon propagator and linear response 152

8.6 Instantons 156

8.7 Infrared problems 161

8.8 Strange quark matter 163

8.9 Color superconductivity 166

8.10 Exercises 174

References 175

Bibliography 176

9 Resummation and hard thermal loops 177

9.1 Isolating the hard thermal loop contribution 179

9.2 Hard thermal loops and Ward identities 185

9.3 Hard thermal loops and effective perturbation theory 187

9.4 Spectral densities 188

9.5 Kinetic theory 189

9.6 Transport coefficients 193

9.7 Exercises 194

References 194

10 Lattice gauge theory 195

10.1 Abelian gauge theory 196

10.2 Nonabelian gauge theory 202

10.3 Fermions 203

10.4 Phase transitions in pure gauge theory 206

10.5 Lattice QCD 212

10.6 Exercises 217

References 217

Bibliography 218

11 Dense nuclear matter 219

11.1 Walecka model 220

11.2 Loop corrections 226

11.3 Three-and four-body interactions 232

11.4 Liquid-gas phase transition 233

11.5 Summary 236

11.6 Exercises 237

References 238

Bibliography 239

12 Hot hadronic matter 240

12.1 Chiral perturbation theory 240

12.2 Self-energy from experimental data 248

12.3 Weinberg sum rules 254

12.4 Linear and nonlinear σ models 265

12.5 Exercises 287

References 287

Bibliography 288

13 Nucleation theory 289

13.1 Quantum nucleation 290

13.2 Classical nucleation 294

13.3 Nonrelativistic thermal nucleation 296

13.4 Relativistic thermal nucleation 298

13.5 Black hole nucleation 313

13.6 Exercises 315

References 315

Bibliography 316

14 Heavy ion collisions 317

14.1 Bjorken model 318

14.2 The statistical model of particle production 324

14.3 The emission of electromagnetic radiation 328

14.4 Photon production in high-energy heavy ion collisions 331

14.5 Dilepton production 339

14.6 J/ψsuppression 345

14.7 Strangeness production 350

14.8 Exercises 356

References 358

Bibliography 359

15 Weak interactions 361

15.1 Glashow-Weinberg-Salam model 361

15.2 Symmetry restoration in mean field approximation 365

15.3 Symmetry restoration in perturbation theory 369

15.4 Symmetry restoration in lattice theory 374

15.5 Exercises 377

References 377

Bibliography 378

16 Astrophysics and cosmology 379

16.1 White dwarf stars 380

16.2 Neutron stars 382

16.3 Neutrino emissivity 388

16.4 Cosmological QCD phase transition 394

16.5 Electroweak phase transition and baryogenesis 402

16.6 Decay of a heavy particle 408

16.7 Exercises 410

References 411

Bibliography 412

Conclusion 413

Appendix 417

A1.1 Thermodynamic relations 417

A1.2 Microcanonical and canonical ensembles 418

A1.3 High-temperature expansions 421

A1.4 Expansion in the degeneracy 423

References 424

Index 425