第1章RBF神经网络的实际应用 1
1.1用于曲线拟合的RBF神经网络 1
1.2径向基网络实现非线性函数回归 10
1.3 CRNN网络应用 13
1.4 PNN网络应用 15
1.5 RBF神经网络的优缺点 19
第2章SOM网络算法分析与应用 22
2.1 SOM网络的生物学基础 22
2.2 SOM网络的拓扑结构 22
2.3 SOM网络的权值调整 23
2.4 SOM网络的MATLAB实现 26
2.5 SOM网络的应用 33
第3章 线性网络的实际应用 45
3.1线性化建模 45
3.2模式分类 50
3.3消噪处理 51
3.4系统辨识 54
3.5系统预测 55
第4章BP网络算法分析与应用 61
4.1 BP网络模型 61
4.2 BP网络学习算法 62
4.2.1 BP网络学习算法介绍 62
4.2.2 BP网络学习算法的比较 67
4.3 BP神经网络特点 68
4.4 BP网络功能 68
4.5 BP网络实例分析 68
第5章 神经网络在选址与地震预测中的应用 78
5.1配送中心选址 78
5.2地震预报 81
5.2.1问题概述 82
5.2.2网络设计 83
5.2.3网络训练与测试 83
5.2.4网络实现 88
第6章 模糊神经网络的算法分析与实现 91
6.1模糊神经网络的形式 91
6.2神经网络和模糊控制结合的优点 92
6.3神经模糊控制器 92
6.4神经模糊控制器的学习算法 95
6.5模糊神经网络MATLAB函数 97
6.5.1模糊神经系统的建模函数 97
6.5.2采用网格分割方式生成模糊推理系统函数 102
6.6 MATLAB模糊神经推理系统的图形用户界面 103
第7章BP网络的典型应用 107
7.1数据归一化方法 107
7.2提前终止法 109
7.3 BP网络的局限性 111
7.4 BP网络典型应用 112
7.4.1用BP网络估计胆固醇含量 112
7.4.2线性神经网络在信号预测中的应用 115
第8章 线性神经网络算法分析与实现 120
8.1线性神经网络工具箱函数 120
8.1.1创建函数 120
8.1.2学习函数 122
8.1.3性能函数 124
8.2线性神经网络模型及结构 125
8.3线性神经网络的学习算法与训练 126
8.3.1线性神经网络的学习算法 126
8.3.2线性神经网络的训练 128
8.4线性神经网络的滤波器 130
第9章 感知器网络算法分析与实现 133
9.1单层感知器 133
9.1.1单层感知器模型 133
9.1.2单层感知器功能 134
9.1.3单层感知器结构 136
9.1.4单层感知器学习算法 137
9.1.5单层感知器训练 138
9.1.6单层感知器局限性 139
9.1.7单层感知器的MATLAB实现 140
9.2多层感知器 147
9.2.1多层感知器模型 147
9.2.2多层感知器设计方法 147
9.2.3多层感知器的MATLAB实现 148
第10章 神经网络工具箱函数分析与应用 153
10.1神经网络仿真函数 153
10.2神经网络训练函数 155
10.2.1 train 156
10.2.2 trainb函数 156
10.3神经网络学习函数 158
10.4神经网络初始函数 161
10.5神经网络输入函数 163
10.6 神经网络的传递函数 165
10.7神经网络求点积函数 168
第11章BM网络与BSB网络算法分析与实现 169
11.1 Boltzmann神经网络 169
11.1.1 BM网络的基本结构 169
11.1.2 BM模型的学习 169
11.1.3 BM网络的实现 172
11.2 BSB神经网络 174
第12章 感知器网络工具箱函数及其应用 177
12.1创建函数 177
12.2显示函数 180
12.3性能函数 181
第13章RBF神经网络算法分析与应用 186
13.1 RBF神经网络模型 186
13.2 RBF神经网络的数学基础 188
13.2.1内插问题 188
13.2.2正则化网络 189
13.3 RBF神经网络的学习算法 190
13.3.1自组织选取中心法 190
13.3.2梯度训练方法 191
13.3.3正交最小二乘(OLS)学习算法 192
13.4其他RBF神经网络 193
13.4.1广义回归神经网络 193
13.4.2泛化回归神经网络 194
13.4.3概率神经网络 195
13.5 RBF神经网络MATLAB函数 196
13.5.1创建函数 196
13.5.2权函数 199
13.5.3输入函数 200
13.5.4传递函数 201
13.5.5 mse函数 201
13.5.6变换函数 202
第14章Simulink神经网络应用 204
14.1 Simulink神经网络仿真模型库 204
14.2 Simulink神经网络应用 208
第15章ART网络与CP网络算法分析与应用 213
15.1 ART-1型网络 213
15.1.1 ART-1型网络结构 213
15.1.2 ART-1网络学习过程 215
15.1.3 ART-1网络的应用 216
15.2 ART-2型网络 218
15.2.1网络结构与运行原理 219
15.2.2网络的数学模型与学习算法 220
15.2.3 ART-2型网络在系统辨识中的应用 222
15.3 CP神经网络概述 223
15.3.1 CP网络学习 224
15.3.2 CP网络应用 225
第16章Hopfield网络算法分析与实现 231
16.1 Hopfield神经网络 231
16.1.1离散型Hopfield网络 231
16.1.2 DHNN的动力学稳定性 234
16.1.3网络权值的学习 236
16.1.4联想记忆功能 239
16.2连续型Hopfield网络 240
16.3 Hopfield神经网络的应用 242
16.3.1 Hopfield神经网络函数 242
16.3.2 Hopfield神经网络的应用 245
第17章LVQ网络算法分析与应用 259
17.1 LVQ神经网络的结构 259
17.2 LVQ神经网络的学习算法 260
17.2.1 LVQ1算法 260
17.2.2 LVQ2算法 260
17.3 LVQ神经网络的特点 261
17.4 LVQ神经网络的MATLA B函数 262
17.5 LVQ神经网络的应用 264
第18章 自组织网络算法分析与实现 269
18.1竞争学习的概念 270
18.2竞争学习规则 271
18.3竞争学习原理 272
18.4竞争神经网络MATLAB实现 275
18.5竞争型神经网络存在的问题 279
第19章Elman网络算法分析与应用 280
19.1 Elman神经网络结构 280
19.2 Elman神经网络权值修正的学习算法 281
19.3 Elman网络稳定性推导 282
19.4对角递归网络稳定时学习速率的确定 283
19.5 Elman神经网络在数据预测中的应用 284
第20章BP网络工具箱函数及其应用 288
20.1创建函数 289
20.2传递函数 291
20.3学习函数 293
20.4训练函数 294
20.5性能函数 297
20.6 显示函数 298
第21章 神经网络在实际案例中的应用 300
21.1农作物虫情预测 300
21.1.1虫情预测原理 300
21.1.2网络实现 301
21.2人脸识别 304
21.2.1模型建立 305
21.2.2网络实现 306
第22章 神经网络工具箱函数分析与应用 310
22.1神经网络构建函数的分析与应用 310
22.2神经网络应用函数的分析与应用 324
第23章 线性神经网络算法分析与设计 330
23.1线性神经网络结构 330
23.2线性神经网络设计 331
23.3自适应滤波线性神经网络 333
23.4线性神经网络的局限性 335
23.5线性神经网络的MATLAB应用举例 336
第24章 神经网络工具箱函数及实例分析 342
24.1传递函数及其导函数 342
24.1.1传递函数 342
24.1.2传递函数的导函数 349
24.2距离函数 354
24.3权值函数及其导函数 356
24.3.1权值函数 357
24.3.2权值函数的导函数 358
24.4结构函数 359
24.5分析函数 361
24.6转换函数 362
24.7绘图函数 368
24.8数据预处理和后处理函数 375
第25章 神经网络的工程应用 383
25.1线性神经网络在线性预测中的应用 383
25.2神经模糊控制在洗衣机中的应用 385
25.2.1洗衣机的模糊控制 385
25.2.2洗衣机的神经网络模糊控制器的设计 387
25.3模糊神经网络在配送中心选址中的应用 391
25.4 Elman神经网络在信号检测中的应用 394
25.5神经网络在噪声抵消系统中的应用 397
25.5.1自适应噪声抵消原理 397
25.5.2噪声抵消系统的MATLAB仿真 399
第26章 神经网络算法分析与工具箱应用 402
26.1网络对象属性 404
26.1.1结构属性 404
26.1.2子对象结构属性 408
26.1.3函数属性 411
26.1.4权值和阈值 413
26.1.5参数属性 415
26.1.6其他属性 415
26.2子对象属性 416
26.2.1输入向量 416
26.2.2网络层 417
26.2.3输出向量 422
26.2.4阈值向量 422
26.2.5 输入权值向量 424
26.2.6目标向量 427
26.2.7网络层权值向量 428
第27章 自定义函数及其应用 432
27.1初始化函数 432
27.2学习函数 435
27.3仿真函数 440
27.3.1传递函数 440
27.3.2传递函数导数函数 443
27.3.3网络输入函数 444
27.3.4网络输入导函数 446
27.3.5权值函数 448
27.3.6权值导数函数 450
27.4自组织函数 452
27.4.1拓扑函数 452
27.4.2距离函数 454
参考文献 456