目录 1
绪论 1
第一章 事件与概率 5
§1 随机事件的概念 5
§2 事件间的运算 9
§3 概率的统计定义 14
§4 概率的古典定义 17
§5 概率的公理化定义 25
§6 条件概率 32
§7 事件的独立性 42
§8 贝努里概型 47
习题一 52
第二章 一维随机变量 60
§1 随机变量的概念 60
§2 离散型随机变量 63
§3 几种重要的离散型分布 70
§4 连续型随机变量 80
§5 分布函数 81
§6 分布密度 85
§7 几种重要的连续型分布 90
§8 随机变量的函数及其分布 101
习题二 109
第三章 数字特征 115
§1 数学期望 115
§2 方差 123
§3 几个重要分布的数学期望与方差 128
§4 切贝谢夫不等式 133
§5 矩 137
习题三 141
第四章 二维随机变量 145
§1 二维分布函数 145
§2 二维随机变量的分布 148
§3 随机变量的独立性 159
§4 二维随机变量的数字特证 160
§5 相关系数 166
§6 二维正态分布 170
§7 二维随机变量函数的分布 174
§8 三种重要分布 186
习题四 195
第五章 大数定律与中心极限定理 201
§1 大数定律 201
§2 中心极限定理 207
习题五 220
第六章 数理统计的基本概念 223
§1 母体与子样 224
§2 频率分布表与直方图 226
§3 经验分布函数 231
§4 统计量 常用统计量的分布 234
习题六 242
第七章 点估计 245
§1 矩法估计 246
§2 极大似然估计 248
§3 估计的衡量标准 254
习题七 257
第八章 假设检验 260
§1 假设检验的概念 260
§2 一个正态母体的假设检验 264
§3 两个正态母体的假设检验 273
§4 正态母体参数的置信区间 283
§5 质量管理图 287
§6 非参数假设的检验 297
习题八 302
第九章 方差分析与回归分析 306
§1 单因素方差分析 306
§2 一元线性回归分析 315
§3 正交试验设计法 329
习题九 340
习题答案 342
附表1—7 356