《工人技术学校教学用书 数学》PDF下载

  • 购买积分:12 如何计算积分?
  • 作  者:维哥德斯基著;蔡本源译
  • 出 版 社:北京:机械工业出版社
  • 出版年份:1956
  • ISBN:K15033·251
  • 页数:306 页
图书介绍:

目次 9

序言 9

第一篇代数学 11

第一章初步知识 11

1 关于代数学对象的概念 11

2 简短的历史知识 12

3 文字的应用。公式 13

4 数值的代入 14

5 运算符号 15

6 乘方 15

7 括号 16

8 正数和负数 16

9 对于怎样的量,负数才有意义 18

10 正数和负数的绝对值 18

11 正数和负数的加法 19

12 正数和负数的减法 21

13 加法和减法的简式 21

14 正数和负数的乘法 23

15 正数和负数的除法 24

16 「正号」和「负号」的应用 25

第二章 文字式 26

17 代数和 26

18 系数 26

19 同类式 27

20 整理同类项 27

21 单项式和多项式 28

22 和式和多项式的加法和减法 29

23 乘方和单项式的乘法 29

24 数字乘以和式。展开括号 30

26 和式乘以和式 31

25 添置括号 31

27 简化乘法的公式 32

28 多项式的因式分解 34

29 代数分式。约分 36

30 乘方和单项式的除法 37

31 数目除和 38

32 分式的运算 39

第三章 一次方程式 41

33 等式 41

34 恒等式 41

35 方程 42

36 解方程的第一个基本法则 43

37 解方程的第二个基本法则 44

38 解简单方程的步骤 45

40 分母中含有未知数的方程 47

39 方程的次数 47

41 关于没有解的方程 49

42 关于解方程的历史知识 50

43 用方程解答问题 51

44 关于没有解答的问题 54

45 文字方 56

程 56

46 解文字方程 58

47 用文字方程解问题 59

48 用联立方程解问题 61

49 二元联立方程 62

50 解二元一次联立方程(代入法) 63

51 用代数加法解联立方程 66

第四章 平方根和立方根 69

52 方根 69

53 方根的近似值 70

54 用平方表开平方(1到1000) 72

55 用平方表开平方(任意数) 74

56 用表格开立方 76

57 不用开方表开平方(第一种方法) 77

58 第二种不用开方表开平方的方法 81

59 不用开方表开立方 84

第五章 二次方程 86

60 二次方程 86

61 不完全二次方程的解法 86

62 二次方程的标准形式 88

63 二次方程的解法 88

64 解简化的二次方程的公式 90

65 解不简化二次方程的公式 92

66 用二次方程解答的问题 94

68 函数关系 98

67 变量和常量 98

第六章 函数和图象 98

69 变量和函数 99

70 用表给出函数 100

71 用公式给出函数 100

72 座标 101

73 平面上点的座标 102

74 根据点的座标作出点 103

75 用图象给出函数 104

76 比例关系 106

77 比例的判别法 107

78 用公式表示比例关系 108

79 用图象表示比例关系 110

80 反比例关系 112

81 反比例的判别法 113

83 用图象表示反比例关系 114

82 用公式表示反比例关系 114

第二篇 几何学 119

第一章 初步知识 119

1 关于几何学对象的概念 119

2 几何体、面和线 119

3 直线、线段、射线 123

4 直尺的校验 125

5 线段的作图和线段的比较 125

6 圆周、圆心、半径、弦、直径 128

7 圆、扇形、弓形 129

8 割线和切线 130

同圆周的弧的比较 130

10 弧在圆周上的转移 131

11 角 132

12 角的度量 134

13 量角器 135

14 一度弧 137

15 圆心角 137

16 直角、锐角和钝角。平角 138

17 垂直线和斜线 139

18 画图三角板和画垂直线 140

19 三角板的校验 141

20 邻补角 142

21 对顶角 144

22 平行线 144

23 平行的判别法 146

24 平行线的作图 147

25 对应边互相平行的角 148

第二章 三角形 150

26 多边形 150

27 三角形 151

28 根据三边作三角形 155

29 三角形全等的第一判别法 156

30 根据两边一夹角作三角形。三角形全等的第二判别法 157

31 根据两角及一夹边作三角形。三角形全等的第三判别法 160

32 作直角三角形。直角三角形全等的判别法 161

33 三角形的内角和 162

34 公理、定理、定义 163

35 等腰三角形的性质 164

36 平分线段 165

37 作垂直线 166

38 角的转移 167

39 等分角 168

第三章 多边形 169

40 平行四边形 169

41 平行四边形的性质 169

43 长方形 171

42 平行四边形的判别法 171

44 菱形 172

45 正方形 173

46 等分线段 173

47 梯形 174

48 梯形和三角形的中线 175

49 多边形的内角和 176

50 正多边形 177

51 几种正多边形用直尺和圆规作图 179

52 正多边形的对称轴 181

第四章 相似形 184

53 相似形的基本知识 184

54 相似形对应线段的比例 185

55 相似的定义 187

57 多边形相似的判别法 188

56 相似形的对应角相等 188

58 关于三角形相似的判别法 190

59 三角形相似的第一判别法 191

60 三角形相似的第二判别法 193

61 三角形相似的第三判别法 195

62 相似形的作图 197

63 位似图形。相似中 198

心 198

第五章 三角函数、简单的三角形解法 200

64 角的正弦 200

65 根据图形求出正弦函数的近似值 200

66 根据正弦函数的数值作锐角 202

67 角的馀弦 202

68 根据表查出已知角的正弦和馀弦 204

69 根据正弦或馀弦求角 205

70 角的正切 206

71 角的馀切 207

72 根据表查出已知角的正切和馀切 208

73 根据正切或馀切求角 209

74 关于三角形的解法 210

75 根据斜边和锐角解直角三角形 211

76 根据直角边和锐角解直角三角形 211

77 根据两直角边解直角三角形 213

78 根据直角边和斜边解直角三角形 214

79 解等腰三角形 215

80 解正多边形 215

81 实用举例 217

第六章 直线图形的面积和周长 221

82 面积的度量 221

83 长方形的面积和周长 222

84 正方形的面积和周长 223

85 例题 224

86 等积图形。平行四边形的面积和周长 225

87 三角形的面积 227

88 梯形的面积 228

89 多边形的面积 229

90 根据对角线计算正方形和菱形的面积 231

91 正多边形的面积和周长 232

92 相似多边形的周长 233

93 相似形的面积 234

第七章 商高定理和它的应用 237

94 商高定理 237

95 商高定理的算术表达式 239

96 无理数 241

97 用外接圆半径表达几种正多边形的边长 242

98 圆周长对直径的比值 244

第八章 圆周长和圆面积 244

99 圆周长的公式 245

100 圆周的弧长 246

101 圆的面积 248

102 扇形的面积 251

103 弓形的面积 252

104 圆环的面积 254

第九章 空间的直线和平面 257

105 平面的性质 257

106 空间直线的相关位置 258

107 空间两直线的夹角 258

108 直线和平面的相关位置。平行的判别法 260

109 垂直线和斜线 260

110 投影 263

111 平面和直线的夹角 264

112 两平面的相关位置。它们的平行判别法 264

113 两面角 266

114 基本定义。举例 269

第十章 多面体 269

115 角柱 270

116 平行六面体。它的界面和棱的性质 272

117 平行六面体对角线的性质 273

118 角锥 275

119 角锥台 276

120 角柱的侧面积和全面积 277

121 平行六面体的表面积 278

122 角锥的表面积 279

123 体积的度量 280

124 长方体的体积 280

125 角柱的体积 282

126 角锥的体积 284

127 旋转体。圆柱 286

第十一章 圆形体 286

128 柱面 287

129 圆柱的体积 288

130 圆锥 291

131 圆锥台 292

132 圆锥的表面积 293

133 圆锥的体积 294

134 球 295

135 球面积 296

136 球的体积 298

附录 300

Ⅰ 平方根和立方根表 300

Ⅱ 三角函数表 301

Ⅲ 面积、周长、体积和表面积的公式 302

Ⅳ 拉丁字母表 306