《苏联十年制学校数学教材 几何 六-八年级》PDF下载

  • 购买积分:15 如何计算积分?
  • 作  者:A·H·柯尔莫戈洛夫主编;钟善基等译
  • 出 版 社:北京:人民教育出版社
  • 出版年份:1981
  • ISBN:7012·0432
  • 页数:470 页
图书介绍:

六年级 1

第一章 几何的基本概念 1

1.什么是几何图形 1

2.不给出定义的基本概念 5

3.量和数 6

4.距离的基本性质 8

5.直线上三点的位置关系.三角形不等式 13

6.线段和射线 16

7.直线上的坐标 20

8.折线 23

9.平面.平面几何 28

10.区域 33

11.多边形 37

12.半平面.角 41

13.两个圆周的相互位置 46

14.几何学的历史简述 49

第一章补充习题 53

第二章 图形的合同和位移 58

1.合同 58

15.图形的映射 58

16.保持距离不变的映射 64

17.合同图形 69

18.角的度量 73

2.位移 79

19.旋转 79

20.中心对称 85

21.轴对称 90

1.空间的直线和平面 95

22.三角形的作图 95

3.图形的对称 102

23.圆周的对称轴 102

24.线段的对称轴 105

25.角和等腰三角形的对称轴 108

26.点到直线的距离.角的平分线的性质 112

27.对称图形 117

4.圆周 122

28.圆周上弧的度数 122

29.直线和圆周的相关位置 125

30.作图问题 128

第二章补充习题 132

1.平行线 139

31.直线的平行和中心对称 139

七年级 139

第三章 平行和平移 139

32.平行公理 142

33.非欧几何.几何和物理 145

2.平移 149

34.等价关系 149

35.方向 151

36.平移 155

37.两方向之间的夹角 161

38.多边形的内角和 164

第三章补充习题 168

39.确定三角形的元素 173

第四章 多边形 173

1.三角形 173

40.三角形的边和角的关系 178

2.四边形 181

41.平行四边形 181

42.互逆定理 185

43.必要条件和充分条件 190

44.矩形 193

45.菱形 197

46.正方形 199

47.法勒斯定理 202

48.梯形 205

3.多边形的面积 208

49.关于图形面积的一般知识 208

50.平行四边形的面积 214

51.三角形的面积 216

52.梯形的面积 219

53.多边形的面积 220

第四章补充习题 222

第五章 向量 229

54.位移的合成 229

55.向量及其表示方法 235

56.向量的和 240

57.向量的加法定律.向量的减法 244

58.以数乘向量的乘法 249

59.向量的坐标 252

60.向量和物理学中的矢性量 256

第五章补充习题 258

第六章 相似 262

1.相似和位似 262

61.相似形 262

62.位似 267

63.位似的性质 271

64.比例线段 275

65.相似变换 280

2.相似多边形 283

66.相似三角形的判定 283

67.毕达哥拉斯定理 292

68.相似多边形 296

69.测量工作 302

第六章补充习题 310

1.旋转和旋转的合成 313

70.给定旋转的方法 313

第七章 旋转和三角函数 313

八年级 313

71.角的大小.弧度制 316

72.有公共中心的旋转的合成 319

2.三角函数 322

73.用坐标表示的位移 322

74.正弦和余弦 324

75.关于正弦和余弦的一些恒等式 330

76.正弦表和余弦表 334

90.圆周长 335

77.正切 336

78.直角三角形的边和角之间的关系 339

第七章补充习题 343

第八章 三角形中的度量关系 345

1.正弦定理和余弦定理 345

79.正弦定理 345

80.计算三角形面积的公式 348

81.正弦定理 350

2.相似与三角公式的一些应用 352

82.相似在解题上的应用 352

83.测量工作 360

84.解三角形 362

第八章补充习题 366

1.三角形和四边形 368

85.内接角 368

第九章 内接和外切多边形 368

86.内接和外切三角形 371

87.内接和外切四边形 374

2.正多边形 378

88.正多边形的作图 378

89.计算正多边形的边长和面积的公式 381

3.圆周长和圆面积 385

91.圆面积 390

第九章补充习题 392

第十章 立体几何的初步知识 395

92.空间平面的位置关系 395

93.空间的平行线 397

94.直线和平面的垂直 399

95.直棱柱 402

2.多面体 402

96.棱锥 406

97.体积的一般性质 410

3.旋转图形 412

98.圆柱 412

99.圆锥 415

100.球 418

第十章补充习题 420

六——八年级几何课程的复习题 424

答案和提示 432

附录 452

关于几何的逻辑结构 452

几何中的集合论语言 456

几何公式 457

三角公式 460

希腊字母 461

本书中使用的符号 462

译名索引 464