第一章 函数 1
1.1 函数 1
1.2 函数的特性 10
1.3 反函数 14
1.4 基本初等函数 17
1.5 复合函数 初等函数 22
习题一 25
(A) 25
(B) 28
本章内容提要 30
2.1 数列的极限 35
第二章 极限与连续 35
2.2 函数的极限 41
2.3 无穷小量与无穷大量 52
2.4 极限的四则运算 55
2.5 两个重要极限 61
2.6 无穷小量的比较 70
2.7 函数的连续性 73
习题二 85
(A) 85
(B) 90
本章内容提要 93
第三章 导数与微分 101
3.1 引出导数概念的实例 101
3.2 导数的概念 104
3.3 导数的基本公式和运算法则 111
3.4 高阶导数 128
3.5 微分 131
习题三 140
(A) 140
(B) 145
本章内容提要 147
第四章 中值定理及导数的应用 154
4.1 中值定理 154
4.2 罗比达法则 162
4.3 函数的单调性 172
4.4 函数的极值 176
4.5 函数的最大值与最小值 184
4.6 函数图象的描绘 192
4.7 导数在经济活动中的应用 209
习题四 217
(A) 217
(B) 223
本章内容提要 226
第五章 不定积分 234
5.1 原函数与不定积分的概念 234
5.2 不定积分的性质 239
5.3 基本积分公式 241
5.4 直接积分法 242
5.5 换元积分法 245
5.6 分部积分法 262
5.7 有理函数的积分法 272
习题五 284
(A) 284
(B) 288
本章内容提要 289
第六章 定积分 295
6.1 引例 295
6.2 定积分的定义 299
6.3 定积分的性质 303
6.4 定积分与不定积分的关系 307
6.5 定积分的换元积分法与分部积分法 311
6.6 定积分的简单应用 317
6.7 广义积分 328
习题六 334
(A) 334
(B) 338
本章内容提要 340
第七章 多元函数 343
7.1 空间解析几何简介 343
7.2 多元函数的概念 349
7.3 二元函数的极限与连续 352
7.4 偏导数 354
7.5 全微分 359
7.6 复合函数的微分法 362
7.7 隐函数的微分法 366
7.8 二元函数的极值 369
7.9 二重积分 379
习题七 416
(A) 416
(B) 421
本章内容提要 423
第八章 级数 433
8.1 数项级数的概念 433
8.2 无穷级数的性质 437
8.3 正项级数 442
8.4 任意项级数 448
8.5 幂级数 453
8.6 幂级数的展开式 459
习题八 470
(A) 470
(B) 474
本章内容提要 476
第九章 微分方程 486
9.1 微分方程的一般概念 486
9.2 一阶微分方程 487
9.3 几种二阶微分方程 496
习题九 500
(A) 500
(B) 502
本章内容提要 503