CHAPTER 1 Introduction 3
1.1 General remarks 3
1.2 The design process 8
1.3 Engineering phases 11
1.3.1 Steel pipelines 11
1.3.2 Flexible pipes 12
CHAPTER 2 Design Principles 15
2.1 General remarks 15
2.2 Design formats 17
2.3 Discussion of relevant loads 21
2.4 Discussion of failure modes 29
2.4.1 Mechanical failure modes for steel pipelines 29
2.4.2 Mechanical failure modes for flexible pipes 34
2.5 Cross-section design 37
CHAPTER 3 Steel Pipeline Design 43
3.1 General remarks 43
3.2 Stress and strain components 43
3.3 Wall thickness design 47
3.3.1 The hoop stress(bursting)criteria 47
3.3.2 External pressure collapse 47
3.4 Design against other relevant failure modes in steel pipelines 51
3.4.1 Buckling due to combined loads 51
3.4.2 Fatigue 53
3.4.3 Other mechanical failure modes 53
CHAPTER 4 Mechanical Behaviour of Flexible Pipes 57
4.1 General remarks 57
4.2 Governing stress components 57
4.3 Wire geometries 61
4.4 Behaviour due to axi-symmetric loads 63
4.4.1 General 63
4.4.2 Axial loading 64
4.4.3 Torsion 74
4.4.4 Internal and external pressure 75
4.5 Behaviour in bending 77
4.5.1 General 77
4.5.2 Minimum bend radius 78
4.5.3 Stresses and stress resultants related to the tensile armour 80
4.5.4 Stresses related to the pressure armour 90
4.6 Buckling 93
4.6.1 Carcass collapse 93
4.6.2 Tensile armour buckling 97
4.7 Fatigue 105
4.7.1 General 105
4.7.2 Mean stress correction 106
4.7.3 Mean and dynamic stresses in the tensile armour 108
4.7.4 Mean and dynamic stresses in the pressure armour 110
4.7.5 The effect of corrosion failures in terms of bursting and fatigue performance 111
4.7.6 The effect of corrosion in terms of lateral wire buckling 113
4.7.7 The link between global and local analysis 113
4.8 Computational methods 115
4.8.1 General 115
4.8.2 Axi-symmetric stress analysis 116
4.8.3 Bending and fatigue stress analysis 118
4.8.4 Special cases 119
CHAPTER 5 Heat Transfer and Thermal Insulation 123
5.1 General remarks 123
5.2 The heat transfer coefficient 124
5.2.1 Conduction 125
5.2.2 Convection 127
5.2.3 Influence of soil burial 127
5.3 The tempe rature profile 128
5.4 Time to reach critical temperature 129
CHAPTER 6 Steel Pipeline Material Selection and Welding 135
6.1 General remarks 135
6.2 Material selection 136
6.3 Pipel ine welding 138
6.3.1 General 138
6.3.2 Welding processes 139
6.3.3 Non-destructive testing 141
CHAPTER 7 Pipeline Installation 145
7.1 General remarks 145
7.2 Pipeline installation methods 145
7.2.1 Controlled depth tow method 146
7.2.2 J-lay 147
7.2.3 S-lay 149
7.2.4 Selection of method 150
7.3 Pipeline installation analysis 152
7.3.1 The effective tension concept and Archimedes law 153
7.3.2 The catenary equation 158
7.3.3 Minimum horizontal radius 160
7.3.4 Residual radius and roll 161
CHAPTER 8 Global Buckling 169
8.1 General remarks 169
8.2 The process of buckling 169
8.3 Analytical global buckling model 173
8.4 The significance of different parameters included in an upheaval buckling analysis 177
8.4.1 Formulation of the upheaval buckling failure function 177
8.4.2 Input parameters and failure function 180
8.4.3 The Hasofer-Lind reliability index 182
8.4.4 Results 184
CHAPTER 9 The Finite Element Method as Applied to Slender Structures 189
9.1 General remarks 189
9.2 Basics of the finite element method 191
9.3 Non-linear effects 194
9.4 Strain and stress measures 197
9.5 Non-linear finite element methods 201
9.5.1 Equilibrium equation 201
9.5.2 Non-linear formulations 202
9.5.3 Material law-plasticity for metals 205
9.5.4 Solution techniques 211
9.6 Description of some elements of general relevance forglobal analysis of slender structures 219
9.6.1 General 219
9.6.2 Pipe elements 220
9.6.3 Seabed contact element 223
9.6.4 Roller contact element 226
9.6.5 Pipe-in-pipe contact element 228
9.7 Description of elements related to global and local response of flexible pipes and umbilicals 232
9.7.1 General 232
9.7.2 Helical beam elements 232
9.7.3 Associated elements 237
CHAPTER 10 Modelling and Analysis Examples 243
10.1 General remarks 243
10.2 Dynamic simulation of S-lay 243
10.2.1 Objectives 243
10.2.2 Input data 244
10.2.3 Modelling 245
10.2.4 Results 247
10.3 J-tube pull-in 249
10.3.1 Objectives 249
10.3.2 Input data 250
10.3.3 Modelling 251
10.3.4 Results 252
10.4 Pipeline walking 253
10.4.1 Objectives 253
10.4.2 Input data 253
10.4.3 Modelling 254
10.4.4 Results 254
10.5 Lateral buckling versus alternative soil models 256
10.5.1 Review of lateral soil models 256
10.5.2 Objectives 259
10.5.3 Input data and modelling 259
10.5.4 Results 260
10.6 Pipeline trawl-gear interaction loads 261
10.6.1 General remarks 261
10.6.2 Objectives 265
10.6.3 Input data 265
10.6.4 Modelling 266
10.6.5 Results 267
10.7 Stress behaviour of flexible riser at the platform hang-off 269
10.7.1 Objectives 269
10.7.2 Input data 269
10.7.3 Modelling 271
10.7.4 Results 272
10.8 Lateral buckling behaviour of tensile armours 274
10.8.1 Objectives 274
10.8.2 Input data 274
10.8.3 Modelling 276
10.8.4 Results 278
Bibliography 283