《线性模型参数估计及其改进》PDF下载

  • 购买积分:13 如何计算积分?
  • 作  者:张金槐编著
  • 出 版 社:长沙:国防科技大学出版社
  • 出版年份:1992
  • ISBN:781024194x
  • 页数:368 页
图书介绍:研究生教材:本书论述了线性模型参数估计的最小二乘方理论、线性模型未知参数的Bayes估计、压缩估计方法等。

1 导论 1

2 线性模型参数估计的一般最小二乘方理论 7

2.1 线性模型及未知参数的最小二乘方估计 7

2.2 最小二乘方估计的几何理论 11

2.3 平方和分解及 X 的奇异值分解 16

2.4 模型的标准化 23

2.5 参数估计的分布 26

2.6 关于参数的假设检验 26

2.7 具有线性约束下的参数估计方法 29

2.8 超椭球约束估计 37

2.9 可估性分析 42

2.10 关于设计矩阵的讨论 52

3.1 引言 57

3 线性模型未知参数的 Bayes 估计 57

3.2 共轭分布族 58

3.3 Bayes 估计及其性质 62

3.4 多次观测之下的 Bayes 递推估计 65

4 压缩估计方法 68

4.1 James-Stein 估计的提出 69

4.2 最小加权平均平方误差估计(MWMSE) 74

4.3 James-Stein 估计的性质 76

4.4 Stein 估计的某些扩充 81

4.5 部分压缩估计方法 92

5 岭估计 99

5.1 岭估计与最小二乘方估计的关系 101

5.2 岭估计与压缩估计、Bayes 估计的关系 102

5.3 岭估计控制 LS 估计的条件 104

5.4 岭估计中 K 的确定 109

5.5 广义岭估计及其性质 120

5.6 压缩因子的实际选择 124

6 主成份估计方法 128

6.1 基本思想及方法 128

6.2 主成份估计的性质 132

6.3 特征值因子的筛选 140

7 特征值估计方法 146

8 线性模型参数估计的容许性 155

8.1 引 155

8.2 容许估计的若干充要条件 156

8.3 可估函数的容许性估计 171

8.4 压缩估计的容许性分析 173

9 线性时变系统状态向量的估计及自适应估计 178

9.1 线性模型状态的 MV 估计 180

9.2 新息序列及其性质 201

9.3 滤波过程中新息序列的均值检验 206

9.4 当新息序列的均值不为零时估值的补偿 211

9.5 滤波模型参数估计和实际系统的一致性识别 214

9.6 自适应估计中的 Q 补偿法 216

9.7 模型中的偏倚及噪声方差阵的直接估计方法 223

9.8 衰减记忆自适应估计 230

9.9 非线性系统状态估计的若干迫近方法 235

10 综合性应用举例 262

10.1 惯性制导系统仪表误差分离 262

10.2 测量系统精度的自校正 281

10.3 再入飞行器发射前的校准和瞄准 286

10.4 时间序列的建模 294

附录 向量代数与矩阵 300

参考文献 365