《海岸水域表面波动力学 英文版》PDF下载

  • 购买积分:10 如何计算积分?
  • 作  者:HuangHu著
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2009
  • ISBN:9787040250619
  • 页数:236 页
图书介绍:波动是自然界最宽泛的科学论题之一,尤以近岸水波为甚,而这相对于深水波,更加呈现出水波变化的丰富性和复杂性。《近海表面波动力学:波-流-海底相互作用》一书,以“波-流-海底相互作用”机制和Hamilton系统为主干,提出了旨在谋求广泛应用的若干典型的水波传播基本理论(例如,缓坡方程,短峰波)。在近来一个时期,人们极为关注水波演变的规律,正是起因于全球沿岸海洋工程的急剧发展。该书包含多种理论和概念(尤其是广义波作用量),可为沿岸海洋工程发展提供一个新基础,对物理海洋学家和工程师多有助益。在如何构造理论和推导方法技巧上,该书可谓详尽细微,不乏引人入胜的多个范例。这一切,使得该书能够拥有一个广泛多样的读者群。

1 Preliminaries 1

1.1 Water Wave Theories in Historical Perspective 1

1.1.1 The Mild-Slope Equations 2

1.1.2 The Boussinesq-Type Equations 3

1.2 The Governing Equations 4

1.3 Lagrangian Formulation 5

1.4 Hamiltonian Formulation 5

References 6

2 Weakly Nonlinear Water Waves Propagating over Uneven Bottoms 9

2.1 Modified Third-Order Evolution Equations of Liu and Dingemans 9

2.2 Fourth-Order Evolution Equations and Stability Analysis 15

2.3 Third-Order Evolution Equations for Wave-Current interactions 26

References 35

3 Resonant Interactions Between Weakly Nonlinear Stokes Waves and Ambient Currents and Uneven Bottoms 37

3.1 Introduction 37

3.2 Governing Equations and WKBJ Perturbation Expansion 38

3.3 Subharmonic Resonance 40

3.4 Dynamical System 46

References 51

4 The Mild-Slope Equations 53

4.1 Introduction 53

4.2 Three-Dimensional Currents over Mildly Varying Topography 54

4.3 Two-Dimensional Currents over Rapidly Varying Topography 58

4.4 Three-Dimensional Currents over Rapidly Varying Topography 65

4.5 Two-Dimensional Currents over Generally Varying Topography 70

4.6 A Hierarchy for Two-Dimensional Currents over Generally Varying Topography 73

References 77

5 Linear Gravity Waves over Rigid,Porous Bottoms 79

5.1 Introduction 79

5.2 A Rapidly Varying Bottom 80

5.3 Generally Varying Bottom 85

References 93

6 Nonlinear Unified Equations over an Uneven Bottom 95

6.1 Introduction 95

6.2 Nonlinear Unified Equations 95

6.3 Explicit Special Cases 97

6.3.1 Generalized Nonlinear Shallow-Water Equations of Airy 97

6.3.2 Generalized Mild-Slope Equation 98

6.3.3 Stokes Wave Theory 98

6.3.4 Higher-Order Boussinesq-Type Equations 99

References 102

7 Generalized Mean-Flow Theory 103

7.1 Introduction 103

7.2 Governing Equations and Boundary Conditions 104

7.3 Averaged Equations of Motion 105

7.4 Generalized Wave Action Conservation Equation and Its Wave Actions 109

References 110

8 Hamiltonian Description of Stratified Wave-Current Interactions 113

8.1 Introduction 113

8.2 Two-Layer Wave-Current Interactions 114

8.3 n-Layer Pure Waves 119

8.4 n-Layer Wave-Current Interactions over Uneven Bottoms 122

References 126

9 Surface Capillary-Gravity Short-Crested Waves with a Current in Water of Finite Depth 127

9.1 Introduction 128

9.2 An Incomplete Match and Its Solution 128

9.3 Linear Capillary-Gravity Short-Crested Waves 132

9.3.1 System Formulation 132

9.3.2 Analytical Solutions and Kinematic and Dynamical Variables 134

9.3.3 Special Cases 136

9.4 Second-Order Capillary-Gravity Short-Crested Waves 138

9.5 Third-Order Gravity Short-Crested Waves 146

9.5.1 The System Equations and the Perturbation Method 146

9.5.2 Third-Order Solution 149

9.5.3 Special Cases 161

9.5.4 Short-Crested Wave Quantities 165

9.5.5 Short-Crested Wave Forces on Vertical Walls 171

9.6 Third-Order Pure Capillary-Gravity Short-Crested Waves 178

9.6.1 Formulation 178

9.6.2 Solution 180

9.6.3 Kinematical and Dynamical Variables 197

References 208

Appendices 211

A γ,μand v in(2.1.4) 211

B ζ(3,1),?p(3.1),A(3,2),ηj,τj,μj,λj and vj in Chapter 2 212

C λ1 and λ2 in(2.3.44) 218

D μj in(3.3.22) 219

E I23,I33,I35,I36 in Chapter 5 220

F Coefficients in(9.4.33)and(9.4.34) 223

G Coefficients in(9.5.136)-(9.5.138) 225

H Coefficients in(9.5.139)and(9.5.140) 227

Subject Index 231