《刘彦佩 半闲数学集锦 第18编》PDF下载

  • 购买积分:186 如何计算积分?
  • 作  者:刘彦佩编
  • 出 版 社:时代文化出版社
  • 出版年份:2016
  • ISBN:9881845504
  • 页数:9041 页
图书介绍:

18.01[398] 依节点剖分数树的一种新方法 8537

18.02[394] Errata:“Counting g-essential maps on surfaces with small genera”&R.Hao,J.Cai 8541

18.03[395] 两类重复边合并图的亏格&邵泽玲 8545

18.04[399] The genus polynomials of cross-ladder digraphs in orientable surfaces&R.Hao 8548

18.05[401] 单节点图的弱最大亏格&魏二玲 8556

18.06[402] A census of petal bundles by genus&Y.Xu 8560

18.07[403] 带根Euler平面地图的计数&蔡俊亮 8570

18.08[404] 嵌入在克莱茵瓶上的图的最大亏格&黄元秋,唐玲 8579

18.09[405] 图和它的补图的上可嵌入性&何卫力,任翔 8588

18.10[406] 关于一类新的上可嵌入图的研究&董广华 8591

18.11[407] 关于有根外-无环平面地图计数&许燕 8594

18.12[408] Genus distributions of orientable einbeddings for two types of graphs&Z.L.Shao 8598

18.13[409] Genius embeddings of a type of graphs&Z.L.Shao 8611

18.14[410] Implements of some new algorithms for combinatorial maps&T.Wang 8620

18.15[411] A new method for counting rooted trees with vertex partition 8629

18.16[412] 类圈图的亏格分布&赵喜梅 8634

18.17[413] The number of rooted Eulerian planar maps&J.Cai 8645

18.18[414] 梯形图和交叉型图的亏格分布&万良霞,冯克勤,王殿军 8653

18.19[415] 图的上可嵌入性与围长及相邻节点度和&董广华 8662

18.20[417] 图的双极定向的一种新算法&王立东 8669

18.21[418] 联树模型在亏格等式证明中的应用&曾建初 8673

18.22[420] 两类三正则图最大亏格的新有效算法&董广华,王宁 8677

18.23[421] Up-embeddability via girth and the degree-sum of adjacent vertices&G.H.Dong 8684

18.24[423] 一类四正则图的完全亏格分布&杨艳 8692

18.25[424] (邻接)树图的同构及平面性&魏二玲 8696

18.26[424] A genus inequality of the union graphs&J.C&Zeng 8703

18.27[425] Genus distribution of ladder type and cross typc graphs&L.X.Wan,K.Q.Feng,D.J.Wang 8711

18.28[426] 一类图的亏格&邵择玲 8720

18.29[427] On the embedding distribution of ladders and crosses&L.X.Wan 8730

18.30[428] On three types of embedding of pseudowheels on the projective plane&Y.Yang 8735

18.31[429] 图的上可嵌入性与独立节点的度和&吕胜祥 8747

18.32[430] 叉梯有向图在可定向曲面上的亏格多项式&郝荣霞 8755

18.33[431] 球面和射影平面上不可分地图的色和&李赵祥,任婧,徐世英 8764

18.34[433] The genus distributions of 4-regular digraphs&R.X.Hao,T.Y.Zhang,L.S.Xu 8775

18.35[434] 关于图的上可嵌入性的一个充分条件&蔡俊亮,董广华 8787

18.36[435] The number of rooted essential maps on surfaces&W.Z.Liu 8795

18.37[436] The genus of a type of graph&Z.L.Shao 8805

18.38[437] 关于图的 Edmonds平面对偶定理的一个注记 8813

18.39[439] Up-embeddability of graphs with small order&S.X.Lv 8815

18.40[440] Orientable embedding distributions by genus for certain type of non-planar graphs&L.X.Wan 8820

18.41[441] Up-embeddable graphs via the degree-sum of nonadjacent vertices:non-simple graphs&G.H.Dong,N.Wang 8830

18.42[442] Up-embeddable graphs via the degree-sum of nonadjacent vertices&G.Dong,N.Wang 8843

18.43[443] A note on the neighbor condition for up-embeddability of graphs&Y.C.Chen 8858

18.44[444] Classification of(p,q,n)dipoles on nonorientable surfaces&Y.Yang 8864

18.45[445] Number of embeddings of circular and Mobius ladders on surfaces&Y.Yang 8870

18.46[446] A sufficient condition on upper embeddability of graphs&J.L.Cai,G.H.Dong 8883

18.47[447] Counting rooted Eulerian planar maps&J.L.Cai 8892

18.48[448] Genus polynomials for three types of graphs&Z.L.Shao 8901

18.49[449] Genus distribution for a graph&L.X.Wan,H.J.Lai 8910

18.50[450] The number of rooted circuit boundary maps&Y.Xu 8921

18.51[451] Algebraic principles on polyhegons 8935

18.52[452] On a conjecture of S.Stahl&Y.C.Chen 8946

18.53[453] Surface embeddability of graphs via homology 8948

18.54[454] 3-边连通图的Betti亏数与奇度点&吕胜祥,刘峰 8952

18.55[455] Enumeration of unicursal planar triangulation&Y.L.Zhang,J.L.Cai 8955

18.56[456] Chromatic sums of 2-edge-connected maps on the projective plane&Z.X.Li,E.L.Wei,J.Xu 8961

18.57[457] 射影平面上标号图的辅助图&郝荣霞 8971

18.58[461] The minimal genus of circular graph C(n,m)&E.L.Wei,Z.X.Li 8979

18.59[462] A lower bound on maximum genus of graphs with girth and minimal degree&S.X.Lv 8987

18.60[463] A new bound on maximum genus of simple graphs&S.X.Lv 8994

18.61[464] Genus distributions for double pearl-ladder graphs&J.C.Zeng 9002

18.62[465] The crossing number of two Cartesion products&L.Zhao,W.L.He,X.Ren 9012

18.63[466] Counting orientable cmbeddings by genus for a type of 3-regular graphs&J.C.Zeng.R.X.Hao 9020

18.64[493] Joint-tree model and the maximum genus of graphs&G.H.Dong,N.Wang,Y.Q.Huang 9030