第1章 行列式 1
1.1 行列式的概念 1
1.2 行列式的性质与计算 6
1.3 克莱姆法则 12
第2章 矩阵 18
2.1 矩阵的概念与运算 18
2.2 逆矩阵 26
2.3 矩阵的初等行变换与矩阵的秩 29
第3章 线性方程组 36
3.1 线性方程组解的结构 36
3.2 线性方程组解的讨论 37
第4章 无穷级数 45
4.1 数项级数的概念与性质 45
4.2 数项级数审敛法 48
4.3 幂级数 52
4.4 函数的幂级数展开式 56
4.5 傅里叶级数 61
第5章 傅里叶变换 75
5.1 傅里叶变换的概念与性质 75
5.2 傅里叶变换的应用 82
第6章 拉普拉斯变换 87
6.1 拉普拉斯变换的概念与生质 87
6.2 拉普拉斯变换的应用 95
第7章 随机事件与概率 102
7.1 随机事件与概率 102
7.2 条件概率与乘法公式 事件的独立性 108
7.3 全概率公式与逆概率公式 110
第8章 随机变量及其数字特征 115
8.1 随机变量及其概率分布 115
8.2 随机变量的分布函数与函数分布 121
8.3 随机变量的数字特征 127
第9章 数理统计基础 135
9.1 数理统计基本知识 135
9.2 参数估计 140
9.3 假设检验 145
9.4 一元线性回归分析 151
第10章 图论简介 160
10.1 图的基本概念 160
10.2 最短路问题 162
10.3 树 164
附表1 常用函数傅氏变换表 167
附表2 常用函数拉氏变换表 168
附表3 泊松分布数值表 170
附表4 标准正态分布函数数值表 172
附表5 x2分布临界值表 173
附表6 t分布临界值表 174
附表7 F分布临界值表 175
附表8 相关系数显著性检验表 180
参考答案 181
参考文献 187