《有机薄膜的表征 英文》PDF下载

  • 购买积分:11 如何计算积分?
  • 作  者:(美)布伦德尔(BrundleC.R.),(美)埃文斯(EvansC.A.),(美)乌尔曼(UlmanA.)主编
  • 出 版 社:哈尔滨:哈尔滨工业大学出版社
  • 出版年份:2014
  • ISBN:9787560342870
  • 页数:276 页
图书介绍:最近几十年,研究有机薄膜的分析技术经历了引人注目的发展。使用这些技术能够在分子级水平获得结构信息,这样就可以将材料结构与材料性质联系起来。有机薄膜表征一书可以帮助材料科学家、物理学家、化学家及生物学家对结构与材料的关系有一个基础性理解,这反过来也可以使先进材料的分子工程变为可能并且在分子制造领域开创新机会。本卷以关于Langmuir—Blodgett与自组装膜的介绍性章节作为开始,接着讨论了利用不同分析技术研究其性质,表面/界面与体特性都包含其中。

PART Ⅰ:PREPARATION AND MATERIALS 3

LANGMUIR-BLODGETT FILMS 3

1.1 Introduction 3

1.2 L-B Films of Long-Chain Compounds 6

Fatty Acids 6

Amines 8

Other Long-Chain Compounds 8

1.3 Cyclic Compounds and Chromophores 9

1.4 Polymers and Proteins 10

1.5 Polymerization In Situ 11

1.6 Alternation Films(Superlattices) 12

1.7 Potential Applications 13

SELF-ASSEMBLED MONOLAYERS 21

2.1 Introduction 21

2.2 Monolayers of Fatty Acids 22

2.3 Monolayers of Organosilicon Derivatives 22

2.4 Monolayers of Alkanethiolates on Metal and Semiconductor Surfaces 24

2.5 Self-Assembled Monolayers Containing Aromatic Groups 27

2.6 Conclusions 28

PART Ⅱ:ANALYSIS OF FILM AND SURFACE PROPERTIES 35

SPECTROSCOPIC ELLIPSOMETRY 35

3.1 Introduction and Overview 35

3.2 Theory of Ellipsometry 36

3.3 Instrumentation 38

3.4 Determination of Optical Properties 40

Analysis of Single Ellipsometric Spectra:Direct Inversion Methods 40

Analysis of Single Ellipsometric Spectra:Least-Squares Regression Analysis Method 42

Analysis of Multiple Ellipsometric Spectra 44

3.5 Determination of Thin Film Structure 46

Thickness Determination for Monolayers 46

Microstructural Evolution in Thick Film Growth 50

3.6 Future Prospects 53

INFRARED SPECTROSCOPY IN THE CHARACTERIZATION OF ORGANIC THIN FILMS 57

4.1 Introduction 57

Specific Needs for Characterizing Organic Thin Films 58

General Principles and Capabilities of Infrared Spectroscopy for Surface and Thin Film Analysis 59

4.2 Quantitative Aspects 64

Spectroscopic Intensities 64

Electromagnetic Fields in Thin Film Structures 65

4.3 The Infrared Spectroscopic Experiment 71

General Instrumentation 71

Experimental Modes 71

Additional Aspects 80

4.4 Examples of Applications 81

Self-Assembled Monolayers on Gold by External Reflection 81

Octadecylsiloxane Monolayers on SiO2 by Transmission 82

Langmuir-Blodgett Films on Nonmetallic Substrates by External Reflection 83

RAMAN SPECTROSCOPIC CHARACTERIZATION OF ORGANIC THIN FILMS 87

5.1 Introduction 87

5.2 Fundamentals of Raman Spectroscopy 88

5.3 Instrumental Considerations 90

5.4 Raman Spectroscopic Approaches for the Characterization of Organic Thin Films 92

Integrated Optical Waveguide Raman Spectroscopy(IOWRS) 92

Total Internal Reflection Raman Spectroscopy 94

Surface Enhanced Raman Scattering 95

Normal Raman Spectroscopy 96

Resonance Raman Spectroscopy 97

Plasmon Surface Polariton Enhanced Raman Spectroscopy 97

Fourier Transform Raman Spectroscopy 98

Waveguide Surface Coherent Anti-Stokes Raman Spectroscopy(WSCARS) 99

5.5 Selected Examples of Thin Film Analyses 99

Raman Spectral Characterization of Langmuir-Blodgett Layers of Arachidate and Stearate Salts 99

Raman Spectral Characterization of Self-Assembled Monolayers of Alkanethiols on Metals 104

Surface Enhanced Resonance Raman Spectral Characterization of Langmuir-Blodgett Layers of Phthalocyanines 107

5.6 Prospects for Raman Spectroscopic Characterization of Thin Films 110

SURFACE POTENTIAL 113

6.1 Introduction 113

6.2 Origins of the Contact Potential Difference and Surface Potential 114

The Work Function 114

Contact Potential Difference and Surface Potential 115

Surface Potential Changes Induced by Adsorbates 116

6.3 Measurement of Surface Potential 117

Capacitance Techniques 117

Ionizing-Probe Technique 119

6.4 Surface Potentials of Organic Thin Films 121

Air-Water Interface:Surface Potential of Langmuir Monolayers 121

Air-Solid Interface:Surface Potential of L-B and Related Films 124

6.5 Conclusions 129

X-RAY DIFFRACTION 133

7.1 Introduction 133

7.2 Basic Principles 134

7.3 Structure Normal to Film Plane 135

7.4 Structure Within the Film Plane 139

7.5 Summary 145

HIGH RESOLUTION EELS STUDIES OF ORGANIC THIN FILMS AND SURFACES 147

8.1 Introduction 147

8.2 The Scattering Mechanism 148

Dipole Scattering 149

Impact Scattering 149

Resonance Scattering 150

8.3 The Spectrometer 151

8.4 EELS Versus Other Techniques:Advantages and Disadvantages 153

8.5 Examples 153

Resolution Enhancement 153

Linearity 155

Depth Sensitivity 157

Molecular Orientation 159

Local Versus Long-Range Interactions 160

Surface Segregation 161

8.6 Conclusions 162

WETTING 165

9.1 Introduction 165

9.2 Contact Angles 166

9.3 Techniques for Contact Angle Measurements 171

Axisymmetric Drop Shape Analysis-Profile(ADSA-P) 171

Axisymmetric Drop Shape Analysis-Contact Diameter(ADSA-CD) 173

Capillary Rise Technique 175

9.4 Phase Rule for Moderately Curved Surface Systems 175

9.5 Equation of State for Interfacial Tensions of Solid—Liquid Systems 179

9.6 Drop Size Dependence of Contact Angle and Line Tension 182

9.7 Contact Angles in the Presence of a Thin Liquid Film 184

9.8 Effects of Elastic Liquid-Vapor Interfaces on Wetting 187

SECONDARY ION MASS SPECTROMETRY AS APPLIED TO THIN ORGANIC AND POLYMERIC FILMS 193

10.1 Introduction and Background 193

Overview of the SIMS Method and Experiment 193

Ion Formation Mechanisms 196

Comparisons to Other Surface Analysis Techniques 196

The Motivation for Thin Organic Films as Model Systems 196

10.2 Qualitative Information:Mechanisms of Secondary Molecular Ion Formation 197

Structure-Ion Formation Relationships 197

Applications to Self-Assembled Film Chemistry 199

10.3 The Study of Sampling Depth in the SIMS Experiment 200

10.4 Quantitation in SIMS 203

Development of Quantitation Methods 203

Application of Quantitative Schemes to Thin Film Chemistry 205

10.5 Imaging Applications 208

10.6 Summary and Prospects 208

X-RAY PHOTOELECTRON SPECTROSCOPY OF ORGANIC THIN FILMS 213

11.1 Introduction 213

11.2 Experimental Considerations 214

11.3 Binding Energy Shifts 215

11.4 XPS of Molten Films 215

11.5 Angular Dependent XPS 216

11.6 ETOA XPS of Self-Assembled Monolayers 218

11.7 Conclusions 223

MOLECULAR ORIENTATION IN THIN FILMS AS PROBED BY OPTICAL SECOND HARMONIC GENERATION 227

12.1 Introduction 227

12.2 Experimental Considerations 228

12.3 Molecular Nonlinear Polarizability Calculation 232

12.4 Measurements of the Surface Nonlinear Susceptibility 236

12.5 Molecular Orientation Calculation 239

Case 1:βZZZ only 240

Case 2:βZXX only 241

Case 3:βXXZ(=βXZX)only 241

Case 4:βZZZ and βZXX 241

Case 5:βZXX and βXXZ(=βXZX) 242

12.6 Absolute Molecular Orientation Measurements 243

12.7 Summary and Conclusions 244

APPENDIX:TECHNIQUE SUMMARIES 251

1 Auger Electron Spectroscopy(AES) 251

2 Dynamic Secondary Ion Mass Spectrometry(Dynamic SIMS) 252

3 Fourier Transform Infrared Spectroscopy(FTIR) 253

4 High-Resolution Electron Energy Loss Spectroscopy(HREELS) 254

5 Low-Energy Electron Diffraction(LEED) 255

6 Raman Spectroscopy 256

7 Scanning Electron Microscopy(SEM) 257

8 Scanning Tunneling Microscopy(STM)and Scanning Force Microscopy(SFM) 258

9 Static Secondary Ion Mass Spectrometry(Static SIMS) 259

10 Transmission Electron Microscopy(TEM) 260

11 Variable-Angle Spectroscopic Ellipsometry(VASE) 261

12 X-Ray Diffraction XRD) 262

13 X-Ray Fluorescence(XRF) 263

14 X-Ray Photoelectron Spectroscopy(XPS) 264

Index 265