《可靠性设计与分析 3》PDF下载

  • 购买积分:14 如何计算积分?
  • 作  者:曾声奎主编
  • 出 版 社:北京:国防工业出版社
  • 出版年份:2013
  • ISBN:7118072846
  • 页数:401 页
图书介绍:

第1章 可靠性设计分析基础 1

1.1 引言 1

1.1.1 现代设计思想转变 2

1.1.2 可靠性与性能综合设计 5

1.2 可靠性的基本概念 6

1.2.1 产品与环境 6

1.2.2 可靠性与故障 7

1.2.3 寿命剖面与任务剖面 9

1.2.4 任务可靠性与基本可靠性 12

1.2.5 固有可靠性与使用可靠性 12

1.2.6 耐久性与寿命分布 12

1.3 可靠性的参数及指标 14

1.3.1 可靠性及其度量 14

1.3.2 故障率与浴盆曲线 16

1.3.3 平均故障前时间与平均故障间隔时间 18

1.3.4 可靠性参数分类 20

1.3.5 常用可靠性参数 21

1.3.6 可靠性参数间的相关性 21

1.3.7 可靠性参数指标的特点 22

1.4 可靠性的设计分析流程 23

1.4.1 系统工程过程概述 23

1.4.2 可靠性设计分析流程 26

1.4.3 可靠性设计分析的主要内容 30

第2章 可靠性要求与分配 33

2.1 可靠性要求 33

2.1.1 可靠性定性要求 33

2.1.2 可靠性定量要求 34

2.1.3 可靠性工作项目要求 35

2.2 可靠性分配 37

2.2.1 可靠性分配的目的 37

2.2.2 可靠性分配的原理和准则 38

2.2.3 无约束条件的产品可靠性分配方法 38

2.2.4 有约束条件的产品任务可靠性分配方法 54

2.2.5 可靠性分配方法的选择 56

2.2.6 应用示例 57

2.2.7 进行可靠性分配时的注意事项 62

第3章 可靠性建模与预计 64

3.1 可靠性建模 64

3.1.1 可靠性建模的目的 64

3.1.2 可靠性模型分类 64

3.1.3 典型可靠性模型 66

3.1.4 系统可靠性模型的建立与方法选择原则 89

3.1.5 示例 94

3.2 可靠性预计 96

3.2.1 可靠性预计的目的及其与分配、建模的关系 96

3.2.2 单元可靠性预计 98

3.2.3 系统可靠性预计 102

3.2.4 研制阶段不同时期可靠性预计方法的选取 108

3.2.5 示例 109

3.2.6 进行可靠性预计时的注意事项 111

第4章 可靠性设计方法 113

4.1 概述 113

4.2 制定和贯彻可靠性设计准则 114

4.2.1 概述 114

4.2.2 可靠性设计准则制定 115

4.2.3 可靠性准则贯彻程序及符合性检查报告 120

4.3 简化设计 122

4.3.1 概述 122

4.3.2 简化设计的基本原则与主要技术 122

4.3.3 简化设计的形式和基本步骤 123

4.3.4 示例 123

4.4 余度设计 124

4.4.1 概述 124

4.4.2 余度设计的基本原则与主要技术 129

4.4.3 余度设计的基本步骤 134

4.4.4 示例 136

4.4.5 注意事项 139

4.5 容错设计 139

4.5.1 概述 139

4.5.2 容错技术包含的内容与主要实现方法 140

4.5.3 容错设计的基本步骤 151

4.5.4 典型容错系统 152

4.5.5 示例 155

4.5.6 注意事项 157

4.6 降额设计与裕度设计 157

4.6.1 概述 157

4.6.2 降额设计 158

4.6.3 裕度设计 163

4.6.4 注意事项 165

4.7 热设计与热分析 165

4.7.1 概述 165

4.7.2 热设计 166

4.7.3 热分析 175

4.7.4 注意事项 178

4.8 环境防护设计 179

4.8.1 概述 179

4.8.2 环境防护设计的基本原则 183

4.8.3 环境防护设计的基本步骤 193

4.9 元器件、零部件和原材料的选择与控制 193

4.9.1 概述 193

4.9.2 电子元器件的选择与控制 194

4.9.3 零部件和原材料的选择与控制 200

4.9.4 注意事项 202

第5章 可靠性分析方法 203

5.1 故障模式影响及危害性分析 203

5.1.1 概述 203

5.1.2 故障模式及影响分析 205

5.1.3 危害性分析 212

5.1.4 FMECA结果 218

5.1.5 FMECA示例 218

5.1.6 FMECA中的注意事项 221

5.2 故障树分析 225

5.2.1 概述 225

5.2.2 故障树建立 226

5.2.3 静态故障树的定性分析 230

5.2.4 静态故障树的定量计算 234

5.2.5 动态故障树的分析方法 242

5.2.6 示例 244

5.3 GO法 246

5.3.1 概述 246

5.3.2 GO法基本概念和建模过程 248

5.3.3 GO法分析 250

5.3.4 GO法分析示例 261

5.3.5 GO法分析的注意事项 265

5.4 潜在通路分析 267

5.4.1 概述 267

5.4.2 潜在通路的产生原因及主要表现形式 267

5.4.3 潜在通路分析方法 268

5.4.4 潜在通路分析程序 271

5.4.5 示例 276

5.4.6 潜在通路分析的注意事项 278

5.5 电路容差分析 279

5.5.1 概述 279

5.5.2 容差分析方法 279

5.5.3 容差分析的流程 289

5.5.4 容差分析的注意事项 290

5.6 耐久性分析 291

5.6.1 概述 291

5.6.2 耐久性分析的基本步骤 292

5.6.3 常用的耐久性分析模型和方法 293

5.6.4 航空设备和主要部件的定、延寿分析 295

5.6.5 示例 297

5.6.6 耐久性分析的注意事项 298

5.7 有限元方法及其在可靠性分析中的应用 298

5.7.1 有限元方法的基本概念 299

5.7.2 有限元分析的基本过程 301

5.7.3 有限元方法的应用 303

5.7.4 有限元分析的应用示例 307

5.7.5 有限元分析的软件工具 311

5.7.6 有限元分析的注意事项 311

第6章 可靠性的故障物理方法 313

6.1 故障物理方法的基本思想和概念 313

6.1.1 概述 313

6.1.2 故障机理及分类 314

6.1.3 环境载荷及应力分析 316

6.1.4 故障机理模型 318

6.2 故障物理方法的应用 330

6.2.1 基于故障机理模型的可靠性预计与寿命评估 330

6.2.2 其他方面的应用 337

6.3 故障预测与健康管理(PHM) 341

6.3.1 PHM的基本概念和方法 341

6.3.2 基于故障机理模型的电子产品故障预测 347

第7章 系统可靠性与性能一体化设计 355

7.1 一体化设计简介 355

7.1.1 问题与解决思路 355

7.1.2 技术内涵 356

7.2 一体化设计基本方法和流程 357

7.2.1 基本原理与方法 357

7.2.2 实施流程 361

7.2.3 技术特点 362

7.3 典型产品可靠性与性能一体化设计 363

7.3.1 舵机系统介绍 363

7.3.2 舵机一体化设计方案 365

7.3.3 舵机一体化设计流程实现 366

7.3.4 注意事项 376

第8章 数字化环境中的可靠性设计分析 377

8.1 计算机辅助可靠性设计与分析的发展 377

8.1.1 产品数字化开发环境 377

8.1.2 计算机辅助可靠性设计与分析 379

8.2 基于PLM的可靠性设计与分析集成平台 381

8.2.1 集成平台的体系结构 381

8.2.2 集成平台的物理视图 383

8.2.3 集成平台的功能视图 384

8.2.4 集成平台的运行剖面 386

8.2.5 集成平台的实施过程 387

8.3 典型数字化环境中的可靠性设计与分析示例 394

8.3.1 典型应用场景 394

8.3.2 典型数字化环境中的可靠性设计分析过程 395

参考文献 399