第1章 概述 1
1.1 引言 1
1.2 元启发式算法分类及特点 2
1.3 寻找免费的午餐 7
1.4 元启发式算法的发展方向 8
1.5 本书构思及结构 9
参考文献 9
第2章 蚁群优化算法 12
2.1 算法基础 12
2.1.1 产生与发展 12
2.1.2 生物学原理 13
2.1.3 国内外研究现状 15
2.1.4 发展趋势 17
2.2 算法模型 18
2.2.1 元启发式算法 18
2.2.2 蚁群优化元启发式算法框架 19
2.2.3 经典蚁群算法模型 23
2.3 理论分析 28
2.3.1 收敛性分析 28
2.3.2 状态转移策略分析 35
2.4 改进算法介绍 43
2.4.1 离散域蚁群算法改进 43
2.4.2 连续域蚁群算法改进 50
参考文献 75
第3章 粒子群优化算法 81
3.1 算法基础 81
3.1.1 产生与发展 81
3.1.2 国内外研究现状 83
3.1.3 研究热点 85
3.2 算法模型 86
3.2.1 算法统一框架 86
3.2.2 算法设计步骤 86
3.2.3 算法基本描述与分析 88
3.3 理论分析 91
3.3.1 收敛性分析 91
3.3.2 种群拓扑结构分析 94
3.4 改进算法介绍 104
3.4.1 基于种群多样性的模糊粒子群优化算法 104
3.4.2 双子群离散粒子群优化算法 117
参考文献 142
第4章 萤火虫算法 148
4.1 算法基础 148
4.1.1 产生与发展 148
4.1.2 生物学原理 148
4.1.3 国内外研究现状 149
4.2 算法模型 150
4.2.1 萤火虫算法基本思想 150
4.2.2 萤火虫算法数学描述 150
4.2.3 标准萤火虫算法的基本流程 151
4.3 理论分析 152
4.3.1 萤火虫算法性能和算法参数研究 152
4.3.2 算法测试 153
4.4 改进算法介绍 157
4.4.1 萤火虫算法改进研究动态 157
4.4.2 多目标萤火虫算法研究 158
参考文献 170
第5章 布谷鸟搜索算法 173
5.1 算法基础 173
5.1.1 产生与发展 173
5.1.2 生物学原理 174
5.2 算法模型 175
5.2.1 数学原理 175
5.2.2 基本算法流程 176
5.2.3 算法应用 177
5.3 理论分析 181
5.3.1 随机算法收敛准则 181
5.3.2 布谷鸟搜索算法的Markov模型建立与收敛性分析 182
5.3.3 参数研究 186
5.3.4 算法测试 187
5.4 改进算法介绍 192
5.4.1 算法的改进思路 192
5.4.2 典型改进算法介绍 192
参考文献 199
第6章 和声搜索算法 201
6.1 算法基础 201
6.2 和声搜索算法模型 203
6.2.1 算法流程 203
6.2.2 参数的影响 206
6.2.3 算法改进思路 212
6.3 理论分析 213
6.3.1 马尔可夫链基础知识 213
6.3.2 马尔可夫链的状态分类 215
6.3.3 和声搜索算法收敛性证明 216
参考文献 218
第7章 差分进化算法 220
7.1 算法基础 220
7.1.1 产生与发展 220
7.1.2 差分进化算法(DE)的基本概念及特点 220
7.2 算法模型 222
7.2.1 差分进化算法(DE)的实施流程 222
7.2.2 差分进化算法迭代步骤 225
7.2.3 差分进化算法基本族群 226
7.3 算法改进 227
7.3.1 MNDE的基本原理 228
7.3.2 MNDE中的参数设置 230
7.3.3 MNDE算法性能验证 232
参考文献 238
第8章 随机蛙跳算法 240
8.1 算法基础 240
8.1.1 算法的特点 240
8.1.2 算法研究现状 240
8.2 算法模型 241
8.2.1 生物学原理 241
8.2.2 数学原理 242
8.2.3 算法的实现 242
参考文献 251
第9章 细菌觅食算法 253
9.1 算法介绍 253
9.1.1 产生与发展 253
9.1.2 应用研究 253
9.1.3 算法生物学原理 253
9.2 算法模型 254
9.2.1 算法原理 254
9.2.2 理论分析 256
9.2.3 参数选取 257
9.2.4 算法实现 258
9.2.5 算法的改进思路 262
9.2.6 仿真实验及分析 266
参考文献 270
第10章 蝙蝠算法 271
10.1 算法生物学原理 271
10.1.1 微型蝙蝠的行为 271
10.1.2 回音定位的声学原理 271
10.2 蝙蝠算法 272
10.2.1 虚拟蝙蝠的运动 273
10.2.2 音量和脉冲发生率 274
10.2.3 验证和讨论 275
10.2.4 进一步的研究课题 275
参考文献 276
附录A 蚁群优化算法程序源代码 277
附录B 粒子群优化算法程序源代码 282
附录C 萤火虫算法程序源代码 285
附录D 布谷鸟搜索算法对Ackley函数优化的程序源代码 290
附录E 和声搜索算法程序源代码 294
附录F 差分进化算法程序源代码 297
附录G 随机蛙跳算法程序源代码 305
附录H 细菌觅食算法对Rosenbrock函数优化的程序源代码 309
附录I 蝙蝠算法程序源代码 313