《图论导引》PDF下载

  • 购买积分:9 如何计算积分?
  • 作  者:郝荣霞编著
  • 出 版 社:北京:北京交通大学出版社
  • 出版年份:2014
  • ISBN:9787512117150
  • 页数:165 页
图书介绍:本书系统讨论了图论的基本理论与方法,给出了一些基本算法及应用。书中除了包含树、欧拉图与汉密尔顿图、匹配、平面图、着色、Ramsey数、有向图、网络流等内容外,为了读者更深层次的思考,还介绍了通常一般图论书不包括的双圈覆盖、整数流、随机图等内容。本书的特点就是包含大量的实际例子。在大部分章节的开头都以实际应用为引例,引出本部分所讲内容,然后对所关联的知识点逐渐展开讨论,采用问题式教学的编写模式,目的是激发学生学习图论的积极性。

第1章 图的基本概念 1

1.1图的发展简史 1

1.2图的概念 2

1.3顶点的度 6

1.4连通性 9

1.5图的矩阵表示 14

1.6图的最短路问题 16

练习题 18

第2章 树 22

2.1树和森林的概念 22

2.2树的结构及Cayley公式 25

2.2.1树的结构 25

2.2.2 Cayley公式 27

2.3图上的树 30

2.4深探树和广探树 33

2.5最优树 34

练习题 37

第3章 欧拉图和汉密尔顿图 40

3.1欧拉图 40

3.2汉密尔顿图 42

3.3中国邮递员问题 46

3.4货郎担问题 49

练习题 50

第4章 匹配与因子分解 54

4.1二部图的匹配 54

4.2因子分解 61

4.3匈牙利算法 64

4.4最优分派问题 67

练习题 71

第5章 平面图 75

5.1欧拉公式 75

5.2库拉托斯基定理、对偶图 80

5.3平面性判别算法 82

5.4图的曲面嵌入 86

5.4.1唯一平面嵌入 86

5.4.2曲面嵌入的基本概念和性质 87

练习题 91

第6章 着色 95

6.1顶点着色 95

6.2边着色 102

6.3图的顺序着色算法 108

6.4色多项式 109

6.5图的双圈覆盖 111

6.5.1偶子图的概念和性质 111

6.5.2双圈覆盖 113

练习题 115

第7章 Ramsey数 119

7.1图的Ramsey数 119

7.2 Turan定理 125

练习题 127

第8章 有向图 129

8.1有向图的概念 129

8.2有向图的矩阵 133

8.3竞赛图 137

练习题 140

第9章 网络流 142

9.1流的基本概念 142

9.2最大流最小割定理 145

9.3求最大流的标号法 147

9.4整数流 150

练习题 153

第10章 随机图 156

10.1随机图的概念 156

10.2期望 157

10.3方差 161

练习题 163

参考文献 165