PART 1 Basic Concepts and Introduction to Algorithms 1
Chapter 1 Basic Concepts in Algorithmic Analysis 5
1.1 Introduction 5
1.2 Historical Background 6
1.3 Binary Search 8
1.3.1 Analysis of the binary search algorithm 10
1.4 Merging Two Sorted Lists 12
1.5 Selection Sort 14
1.6 Insertion Sort 15
1.7 Bottom-Up Merge Sorting 17
1.7.1 Analysis of bottom-up merge sorting 19
1.8 Time Complexity 20
1.8.1 Order of growth 21
1.8.2 The O-notation 25
1.8.3 The Ω-notation 26
1.8.4 The ?-notation 27
1.8.5 Examples 29
1.8.6 Complexity clases and the o-notation 31
1.9 Space Complexity 32
1.10 Optimal Algorithms 34
1.11 How to Estimate the Running Time of an Algorithm 35
1.11.1 Counting the number of iterations 35
1.11.2 Counting the frequency of basic operations 38
1.11.3 Using recurrence relations 41
1.12 Worst case and average case analysis 42
1.12.1 Worst case analysis 44
1.12.2 Average case analysis 46
1.13 Amortized Analysis 47
1.14 Input Size and Problem Instance 50
1.15 Exercises 52
1.16 Bibliographic Notes 59
Chapter 2 Mathematical Preliminaries 61
2.1 Sets,Relations and Functions 61
2.1.1 Sets 62
2.1.2 Relations 63
2.1.2.1 Equivalence relations 64
2.1.3 Functions 64
2.2 Proof Methods 65
2.2.1 Direct proof 65
2.2.2 Indirect proof 66
2.2.3 Proof by contradiction 66
2.2.4 Proof by counterexample 67
2.2.5 Mathematical induction 68
2.3 Logarithms 69
2.4 Floor and Ceiling Functions 70
2.5 Factorial and Binomial Coefficients 71
2.5.1 Factorials 71
2.5.2 Binomial coeffcients 73
2.6 The Pigeonhole Principle 75
2.7 Summations 76
2.7.1 Approximation of summations by integration 78
2.8 Recurrence Relations 82
2.8.1 Solution of linear homogeneous recurrences 83
2.8.2 Solution of inhomogeneous recurrences 85
2.8.3 Solution of divide-and-conquer recurrences 87
2.8.3.1 Expanding the recurrence 87
2.8.3.2 Substitution 91
2.8.3.3 Change of variables 95
2.9 Exercises 98
Chapter 3 Data Structures 103
3.1 Introduction 103
3.2 Linked Lists 103
3.2.1 Stacks and queues 104
3.3 Graphs 104
3.3.1 Representation of graphs 106
3.3.2 Planar graphs 107
3.4 Trees 108
3.5 Rooted Trees 108
3.5.1 Tree traversals 109
3.6 Binary Trees 109
3.6.1 Some quantitative aspects of binary trees 111
3.6.2 Binary search trees 112
3.7 Exercises 112
3.8 Bibliographic Notes 114
Chapter 4 Heaps and the Disjoint Sets Data Structures 115
4.1 Introduction 115
4.2 Heaps 115
4.2.1 Operations on heaps 116
4.2.2 Creating a heap 120
4.2.3 Heapsort 124
4.2.4 Min and max heaps 125
4.3 Disjoint Sets Data Structures 125
4.3.1 The union by rank heuristic 127
4.3.2 Path compression 129
4.3.3 The union-find algorithms 130
4.3.4 Analysis of the union-find algorithms 132
4.4 Exercises 134
4.5 Bibliographic Notes 137
PART 2 Techniques Based on Recursion 139
Chapter 5 Induction 143
5.1 Introduction 143
5.2 Two Simple Examples 144
5.2.1 Selection sort 144
5.2.2 Insertion sort 145
5.3 Radix Sort 145
5.4 Integer Exponentiation 148
5.5 Evaluating Polynomials(Horner’s Rule) 149
5.6 Generating Permutations 150
5.6.1 The first algorithm 150
5.6.2 The second algorithm 152
5.7 Finding the Majority Element 154
5.8 Exercises 155
5.9 Bibliographic Notes 158
Chapter 6 Divide and Conquer 161
6.1 Introduction 161
6.2 Binary Search 163
6.3 Mergesort 165
6.3.1 How the algorithm works 166
6.3.2 Analysis of the mergesort algorithm 167
6.4 The Divide and Conquer Paradigm 169
6.5 Selection:Finding the Median and the kth Smallest Element 172
6.5.1 Analysis of the selection algorithm 175
6.6 Quicksort 177
6.6.1 A partitioning algorithm 177
6.6.2 The sorting algorithm 179
6.6.3 Analysis of the quicksort algorithm 181
6.6.3.1 The worst case behavior 181
6.6.3.2 The average case behavior 184
6.6.4 Comparison of sorting algorithms 186
6.7 Multiplication of Large Integers 187
6.8 Matrix Multiplication 188
6.8.1 The traditional algorithm 188
6.8.2 Recursive version 188
6.8.3 Strassen’s algorithm 190
6.8.4 Comparisons of the three algorithms 191
6.9 The Closest Pair Problem 192
6.9.1 Time complexity 194
6.10 Exercises 195
6.11 Bibliographic Notes 202
Chapter 7 Dynamic Programming 203
7.1 Introduction 203
7.2 The Longest Common Subsequence Problem 205
7.3 Matrix Chain Multiplication 208
7.4 The Dynamic Programming Paradigm 214
7.5 The All-Pairs Shortest Path Problem 215
7.6 The Knapsack Problem 217
7.7 Exercises 220
7.8 Bibliographic Notes 226
PART 3 First-Cut Techniques 227
Chapter 8 The Greedy Approach 231
8.1 Introduction 231
8.2 The Shortest Path Problem 232
8.2.1 A linear time algorithm for dense graphs 237
8.3 Minimum Cost Spanning Trees(Kruskal’s Algorithm) 239
8.4 Minimum Cost Spanning Trees(Prim’s Algorithm) 242
8.4.1 A linear time algorithm for dense graphs 246
8.5 File Compression 248
8.6 Exercises 251
8.7 Bibliographic Notes 255
Chapter 9 Graph Traversal 257
9.1 Introduction 257
9.2 Depth-First Search 257
9.2.1 Time complexity of depth-first search 261
9.3 Applications of Depth-First Search 262
9.3.1 Graph acyclicity 262
9.3.2 Topological sorting 262
9.3.3 Finding articulation points in a graph 263
9.3.4 Strongly connected components 266
9.4 Breadth-First Search 267
9.5 Applications of Breadth-First Search 269
9.6 Exercises 270
9.7 Bibliographic Notes 273
PART 4 Complexity of Problems 275
Chapter 10 NP-Complete Problems 279
10.1 Introduction 279
10.2 The Class P 282
10.3 The Class NP 283
10.4 NP-Complete Problems 285
10.4.1 The satisfiability problem 285
10.4.2 Vertex cover,independent set and clique problems 288
10.4.3 More NP-complete Problems 291
10.5 The Class co-NP 292
10.6 The Class NPI 294
10.7 The Relationships Between the Four Classes 295
10.8 Exercises 296
10.9 Bibliographic Notes 298
Chapter 11 Introduction to Computational Complexity 299
11.1 Introduction 299
11.2 Model of Computation:The Turing Machine 299
11.3 k-tape Turing Machines and Time complexity 300
11.4 Off-Line Turing Machines and Space Complexity 303
11.5 Tape Compression and Linear Speed-Up 305
11.6 Relationships Between Complexity Classes 306
11.6.1 Space and time hierarchy theorems 309
11.6.2 Padding arguments 311
11.7 Reductions 313
11.8 Completeness 318
11.8.1 NLOGSPACE-complete problems 318
11.8.2 PSPACE-complete problems 319
11.8.3 P-complete problems 321
11.8.4 Some conclusions of completeness 323
11.9 The Polynomial Time Hierarchy 324
11.10 Exercises 328
11.11 Bibliographic Notes 332
Chapter 12 Lower Bounds 335
12.1 Introduction 335
12.2 Trivial Lower Bounds 335
12.3 The Decision Tree Model 336
12.3.1 The search problem 336
12.3.2 The sorting problem 337
12.4 The Algebraic Decision Tree Model 339
12.4.1 The element uniqueness problem 341
12.5 Linear Time Reductions 342
12.5.1 The convex hull problem 342
12.5.2 The closest pair problem 343
12.5.3 The Euclidean minimum spanning tree problem 344
12.6 Exercises 345
12.7 Bibliographic Notes 346
PART 5 Coping with Hardness 349
Chapter 13 Backtracking 353
13.1 Introduction 353
13.2 The 3-Coloring Problem 353
13.3 The 8-Queens Problem 357
13.4 The General Backtracking Method 360
13.5 Branch and Bound 362
13.6 Exercises 367
13.7 Bibliographic notes 369
Chapter 14 Randomized Algorithms 371
14.1 Introduction 371
14.2 Las Vegas and Monte Carlo Algorithms 372
14.3 Randomized Quicksort 373
14.4 Randomized Selection 374
14.5 Testing String Equality 377
14.6 Pattern Matching 379
14.7 Random Sampling 381
14.8 Primality Testing 384
14.9 Exercises 390
14.10 Bibliographic Notes 392
Chapter 15 Approximation Algorithms 393
15.1 Introduction 393
15.2 Basic Definitions 393
15.3 Difference Bounds 394
15.3.1 Planar graph coloring 395
15.3.2 Hardness result:the knapsack problem 395
15.4 Relative Performance Bounds 396
15.4.1 The bin packing problem 397
15.4.2 The Euclidean traveling salesman problem 399
15.4.3 The vertex cover problem 401
15.4.4 Hardness result:the traveling salesman problem 402
15.5 Polynomial Approximation Schemes 404
15.5.1 The knapsack problem 404
15.6 Fully Polynomial Approximation Schemes 407
15.6.1 The subset-sum problem 408
15.7 Exercises 410
15.8 Bibliographic Notes 413
PART 6 Iterative Improvement for Domain-Specific Problems 415
Chapter 16 Network Flow 419
16.1 Introduction 419
16.2 Preliminaries 419
16.3 The Ford-Fulkerson Method 423
16.4 Maximum Capacity Augmentation 424
16.5 Shortest Path Augmentation 426
16.6 Dinic’s Algorithm 429
16.7 The MPM Algorithm 431
16.8 Exercises 434
16.9 Bibliographic Notes 436
Chapter 17 Matching 437
17.1 Introduction 437
17.2 Preliminaries 437
17.3 The Network Flow Method 440
17.4 The Hungarian Tree Method for Bipartite Graphs 441
17.5 Maximum Matching in General Graphs 443
17.6 An O(n2.5)Algorithm for Bipartite Graphs 450
17.7 Exercises 455
17.8 Bibliographic Notes 457
PART 7 Techniques in Computational Geometry 459
Chapter 18 Geometric Sweeping 463
18.1 Introduction 463
18.2 Geometric Preliminaries 465
18.3 Computing the Intersections of Line Segments 467
18.4 The Convex Hull Problem 471
18.5 Computing the Diameter of a Set of Points 474
18.6 Exercises 478
18.7 Bibliographic Notes 480
Chapter 19 Voronoi Diagrams 481
19.1 Introduction 481
19.2 Nearest-Point Voronoi Diagram 481
19.2.1 Delaunay triangulation 484
19.2.2 Construction of the Voronoi diagram 486
19.3 Applications of the Voronoi Diagram 489
19.3.1 Computing the convex hull 489
19.3.2 All nearest neighbors 490
19.3.3 The Euclidean minimum spanning tree 491
19.4 Farthest-Point Voronoi Diagram 492
19.4.1 Construction of the farthest-point Voronoi diagram 493
19.5 Applications of the Farthest-Point Voronoi Diagram 496
19.5.1 All farthest neighbors 496
19.5.2 Smallest enclosing circle 497
19.6 Exercises 497
19.7 Bibliographic Notes 499
Bibliography 501
Index 511