《混凝土与可持续发展 英文》PDF下载

  • 购买积分:14 如何计算积分?
  • 作  者:杰森隋同波
  • 出 版 社:北京:化学工业
  • 出版年份:2013
  • ISBN:9787122179357
  • 页数:440 页
图书介绍:本书为英文、全彩图书,共分为7章,分别介绍混凝土可持续发展对经济和社会发展的影响,混凝土环境面对的政策及规定,特别是水泥混凝土工业面对的环境挑战问题、遇到的新形式和机遇、未来的发展。本书可以帮助读者掌握国内外关于混凝土发展的最新形势、动态,可以为科研人员提供参考。

1 Introduction 1

1.1 The economical impact of concrete 2

1.2 Concrete and social progress 7

2 Environmental issues 53

2.1 Global/regional/local aspects 53

2.2 Rating systems 53

2.3 Evaluation systemstools 58

2.4 ISO methodology/standards 67

2.5 Variation in focus 73

2.5.1 Different sectors of the concrete industry tend to focus on different aspects 74

2.5.2 Focus:Lifetime expectancy perspectives 75

2.5.3 Focus:2020 75

2.5.4 Focus:2050 75

2.6 Traditions/testing 76

2.6.1 Example 1 77

2.6.2 Example 2 78

2.6.3 Example 3 79

3 Emissions and absorptions 81

3.1 General 81

3.2 CO2 emission from cement and concrete production 85

3.3 Emission of other greenhouse gases 89

3.4 Absorption/carbonation 92

3.5 The tools and possible actions 103

3.5.1 Increased utilisation of supplementary cementing materials 103

3.5.2 Fly ash 107

3.5.3 Blast furnace slag 115

3.5.4 Silica fume 118

3.5.5 Metakaolin 120

3.5.6 Rice husk ash(RHA) 121

3.5.7 Natural pozzolans 124

3.5.8 Other ashes and slags 130

3.5.8.1 Sewage sludge incineration ash(SSIA) 131

3.5.8.2 Ferroalloy slag 131

3.5.8.3 Barium and strontium slag 132

3.5.8.4 Other types of slag 132

3.5.8.5 Ashes from co-combustion 133

3.5.8.6 Wood ash 134

3.5.8.7 Fluidised bed ash 134

3.5.9 Limestone powder 135

3.5.10 Other supplementary cementitious materials 138

3.5.11 Improvements and more efficient cement production 141

3.5.12 New/other types of cement/binders 152

3.5.12.1 High-belite cement(HBC) 163

3.5.12.2 Sulphur concrete 164

3.5.13 Increased carbonation 165

3.5.14 Better energy efficiency in buildings 165

3.5.15 Improved mixture design/packing technology/water reduction 166

3.5.16 Increased building flexibility,and more sustainable design and recycling practice 169

3.5.17 Miscellaneous 172

3.5.17.1 Production restrictions 172

3.5.17.2 The testing regime 172

3.5.18 Carbon capture and storage(CCS) 172

3.5.18.1 Capture 173

3.5.18.2 Storage 174

3.6 Variation in focus 176

3.6.1 Focus 1:Lifetime expectancy perspective 176

3.6.2 Focus 2:2020 177

3.6.3 Focus 3:2050 178

3.7 Some conclusions 180

4 Recycling 181

4.1 Recycling of concrete 181

4.1.1 Norway 186

4.1.2 Japan 187

4.1.3 The Netherlands 188

4.1.4 Hong Kong,China 189

4.1.5 General 189

4.1.5.1 Processing technology 192

4.1.5.2 Fines 194

4.2 Recycling of other materials as aggregate in concrete 200

4.2.1 Used rubber tires in concrete 200

4.2.2 Aggregate manufactured from fines 204

4.2.3 Processed sugar cane ash 204

4.2.4 Recycled plastic,e.g.,bottles 204

4.2.5 Hempcrete and other"straw concretes" 206

4.2.6 Papercrete 207

4.2.7 Oil palm shell lightweight concrete 208

4.2.8 Glass concrete 208

4.2.9 Paper mill ash for self-compacting concrete(SCC) 211

4.2.10 Slag 211

4.2.11 Recycling of"doubtful"waste as aggregate 211

4.2.12 Iron mine mill waste(mill tailings) 213

4.2.13 Bauxite residuered sand 213

4.2.14 Copper slag 214

4.2.15 Other materials 214

4.2.16 Waste latex paint 215

4.2.17 Fillers for self-compacting concrete 216

4.3 Recycling of other materials as reinforcement in concrete 219

4.4 Recycling of other materials as binders in concrete 220

4.4.1 Waste glass 220

4.4.2 Recycling of fluid catalytic cracking catalysts 220

4.5 Recycling of cement kiln dust(CKD) 221

5 The environmental challenges—other items 225

5.1 Aggregate shortage 225

5.2 Durabilitylongevity 231

5.3 Energy savings 241

5.4 Health 248

5.4.1 Skin burn 250

5.4.2 The chromium challenge 250

5.4.3 Compaction by vibration 252

5.4.4 Dust 252

5.4.5 Emission and moisture in concrete 253

5.4.6 Form oil 255

5.4.7 NOx-absorbing concrete 255

5.4.7.1 General 255

5.4.7.2 Principle of reaction 255

5.4.7.3 The catalyst 255

5.4.7.4 The effects 256

5.4.7.5 Concrete—product areas 257

5.4.7.6 Other experiences 258

5.4.7.7 Climate change and health 259

5.5 Leakage 260

5.5.1 General 260

5.5.2 Leakage of pollutants from cement and concrete 261

5.5.2.1 Leakage from the cement manufacture process 262

5.5.2.2 Leakage from concrete 263

5.5.3 Concrete to prevent leakage 269

5.6 Noise pollution 271

5.6.1 Noise reduction in concrete production 273

5.6.2 Noise reduction from traffic 273

5.6.3 Reduction of noise pollution in buildings 274

5.6.4 Step sound reduction in stairways 275

5.7 Radiation 280

5.7.1 Effects of radioactive radiation on the human body 281

5.7.1.1 Alpha particles(or alpha radiation) 281

5.7.1.2 Beta particles 282

5.7.1.3 X-rays and gamma rays 282

5.7.2 Natural radioactivity in building materials 285

5.7.3 Radiation from cement and concrete 289

5.7.4 Radioactivity risk reduction with cement and concrete 292

5.7.4.1 Concrete as a shield of radiation 292

5.7.4.2 Encapsulation of radioactive materials with cement and concrete 296

5.7.5 Clearance of radioactive concrete 299

5.8 Safety 300

5.8.1 Concrete as a safety tool 303

5.8.2 Concrete safety levels in a climate change perspective 305

5.9 Water 307

5.9.1 Water shortage 310

5.9.2 Managing the increased precipitation 314

5.9.2.1 Pervious concrete 316

5.9.2.2 Pervious ground with concrete paver systems 319

5.9.2.3 Delaying systems 319

5.9.3 Reuse of wash water from concrete production 320

5.9.4 Escape of wash water from concrete production to freshwater and the sea 328

5.9.5 Food supply—artificial fish reefs (AFRs) 331

5.9.5.1 History 332

5.9.5.2 Where have AFRs been used? 332

5.9.5.3 Motivations for establishing AFRs 333

5.9.5.4 Design factors 334

5.9.5.5 Some examples 337

5.9.5.6 Restoration of coral reefs 337

5.9.5.7 The Tjuvholmen project 338

5.9.6 Erosion protection 342

5.10 Wastes 342

6 New possibilities and challenges 357

6.1 Small hydroelectric power stations 358

6.2 Windmills 359

6.3 New raw materials/low energy and low CO2 cements 365

6.3.1 Principle for clinker composition design 366

6.3.2 Lower energy and low-emission clinker preparation 368

6.3.3 Performance evaluation of HBC 368

6.3.3.1 Strength 369

6.3.3.2 Heat evolution characteristics 370

6.3.3.3 Chemical corrosion resistance 371

6.3.3.4 Drying shrinkage 371

6.3.3.5 Existing standards for HBC 372

6.3.3.6 Simplified explanation for the excellent performance of HBC 372

6.3.4 Latest results on belite-calcium Sulfoaluminate(BCSA)cement 372

6.4 New concrete products and components 373

7 The future 375

References 379

Index 413