1 Neutrinos:Past,Present and Future 1
1.1 Neutrinos in Nuclear and Particle Physics 1
1.1.1 Pauli's Neutrino Hypothesis 2
1.1.2 Weak Interactions and Neutrinos 3
1.1.3 Discoveries of Neutrinos 4
1.2 Neutrinos in Astronomy and Cosmology 6
1.2.1 Neutrinos from Stars and Supernovae 7
1.2.2 High-energy Cosmic Neutrinos 9
1.2.3 Cosmic Neutrino Background 10
1.3 Knowledge and Questions on Neutrinos 11
1.3.1 Present Knowledge on Neutrinos 12
1.3.2 Open Questions on Neutrinos 14
References 17
2 Neutrinos within the Standard Model 21
2.1 Fundamentals of the Standard Model 21
2.1.1 Gauge Symmetries 21
2.1.2 Spontaneous Symmetry Breaking 23
2.1.3 Renormalizability 25
2.1.4 The Standard Electroweak Model 28
2.2 Standard Interactions of Neutrinos 32
2.2.1 Neutrino-electron Scattering 34
2.2.2 Neutrino-neutrino Scattering 39
2.2.3 Neutrino-nucleon Interactions 40
2.3 Neutrino Propagation in a Medium 43
2.3.1 Coherent Forward Scattering 43
2.3.2 The Effective Potential 47
2.3.3 Neutrino Self-energy Approach 51
References 58
3 Neutrinos beyond the Standard Model 61
3.1 Experimental Evidence for Neutrino Masses 61
3.1.1 Atmospheric Neutrino Oscillations 62
3.1.2 Accelerator Neutrino Oscillations 63
3.1.3 Solar Neutrino Oscillations 64
3.1.4 Reactor Neutrino Oscillations 67
3.1.5 Implications of Experimental Data 69
3.2 Dirac and Majorana Neutrino Mass Terms 69
3.2.1 Dirac Masses and Lepton Number Conservation 71
3.2.2 Majorana Masses and Lepton Number Violation 73
3.2.3 Hybrid Mass Terms and Seesaw Mechanisms 75
3.3 C,P and T Properties of Fermion Fields 79
3.3.1 C,P and T Transformations of Spinor Bilinears 79
3.3.2 CP Violation in Quark and Lepton Sectors 81
3.4 Electromagnetic Properties of Massive Neutrinos 86
3.4.1 Electromagnetic Form Factors 86
3.4.2 Magnetic and Electric Dipole Moments 89
3.4.3 Radiative Decays of Massive Neutrinos 92
3.4.4 Electromagnetic Neutrino-electron Scattering 94
3.5 Lepton Flavor Mixing and CP Violation 97
3.5.1 Classification of Different Parametrizations 97
3.5.2 Democratic and Tri-bimaximal Mixing Patterns 100
3.5.3 Rephasing Invariants and Unitarity Triangles 103
3.5.4 Flavor Problems in Particle Physics 105
3.6 Running Behaviors of Neutrino Mass Parameters 108
3.6.1 One-loop Renormalization-group Equations 109
3.6.2 Evolution of Majorana Neutrino Mass Parameters 111
3.6.3 Evolution of Dirac Neutrino Mass Parameters 116
References 119
4 Seesaw Mechanisms of Neutrino Masses 125
4.1 How to Generate Tiny Neutrino Masses 125
4.1.1 Non-seesaw Mechanisms 126
4.1.2 Seesaw Mechanisms 128
4.1.3 The Weinberg Operator 129
4.2 On the Scales of Seesaw Mechanisms 133
4.2.1 Seesaw-induced Hierarchy Problem 133
4.2.2 Seesaw-induced Naturalness Problem 134
4.3 Seesaw Mechanisms at the TeV Scale 135
4.3.1 Type-ⅠSeesaw Mechanism 135
4.3.2 Type-ⅡSeesaw Mechanism 137
4.3.3 Type-(Ⅰ+Ⅱ) Seesaw Mechanism 138
4.3.4 Type-ⅢSeesaw Mechanism 140
4.3.5 Inverse Seesaw Mechanism 141
4.4 Multiple Seesaw Mechanisms 142
4.4.1 Two Classes of Multiple Seesaw Mechanisms 143
4.4.2 Charged-current Interactions 147
4.5 Non-unitary Neutrino Mixing and CP Violation 150
4.5.1 Jarlskog Invariants of CP Violation 151
4.5.2 Mixing Angles and CP-violating Phases 152
References 155
5 Phenomenology of Neutrino Oscillations 159
5.1 Neutrino Oscillations and Matter Effects 159
5.1.1 Neutrino Oscillations in Vacuum 160
5.1.2 Adiabatic Neutrino Oscillations in Matter 164
5.1.3 Non-adiabatic Neutrino Oscillations in Matter 168
5.1.4 The 3×3 Neutrino Mixing Matrix in Matter 171
5.1.5 Leptonic Unitarity Triangles in Matter 174
5.2 Neutrino Oscillations and Quantum Coherence 177
5.2.1 A Paradox of Neutrino Oscillations 178
5.2.2 The Wave-packet Approach 182
5.2.3 Coherence of Cosmic Neutrinos 184
5.3 Density Matrix Formulation 187
5.3.1 Two-flavor Neutrino Oscillations 188
5.3.2 Three-flavor Neutrino Oscillations 193
5.3.3 Non-linear Evolution Equations 195
5.4 Future Long-baseline Neutrino Oscillation Facilities 201
5.4.1 Prospects of Accelerator Neutrino Experiments 201
5.4.2 Prospects of Reactor Antineutrino Experiments 206
References 209
6 Neutrinos from Stars 213
6.1 Stellar Evolution in a Nutshell 213
6.1.1 Distance,Luminosity and Mass 213
6.1.2 Basic Equations of Stellar Evolution 218
6.1.3 Energy Sources of Stars 223
6.1.4 The Mass-Luminosity Relation 226
6.2 Neutrinos from the Sun 227
6.2.1 The Standard Solar Model 228
6.2.2 Proton-proton Chain and CNO Cycle 230
6.2.3 Solar Neutrino Fluxes 232
6.3 Experimental Detection of Solar Neutrinos 233
6.3.1 Radiochemical Methods 233
6.3.2 Water Cherenkov Detectors 237
6.3.3 Future Solar Neutrino Experiments 240
6.4 Solar Neutrino Oscillations 241
6.4.1 The Solar Neutrino Problem 241
6.4.2 The MSW Matter Effects 242
6.4.3 Constraints on Neutrino Properties 244
References 245
7 Neutrinos from Supernovae 249
7.1 Stellar Core Collapses and Supernova Neutrinos 249
7.1.1 Degenerate Stars 250
7.1.2 Core-collapse Supernovae 252
7.1.3 Supernova Neutrinos 254
7.2 Lessons from the Supernova 1987A 256
7.2.1 Discoveries of the Neutrino Burst 257
7.2.2 Constraints on Neutrino Properties 259
7.2.3 The Diffuse Supernova Neutrino Background 260
7.2.4 Future Supernova Neutrino Experiments 262
7.3 Matter Effects on Supernova Neutrinos 263
7.3.1 Neutrino Fluxes and Energy Spectra 265
7.3.2 Matter Efiects in the Supernova 265
7.3.3 Matter Effects in the Earth 269
7.4 Collective Neutrino Flavor Conversions 272
7.4.1 Equations of Motion 272
7.4.2 Synchronized Neutrino Oscillations 275
7.4.3 Bipolar Flavor Conversions 277
7.4.4 Neutrino Spectral Splits 280
7.4.5 Effects of Three Neutrino Flavors 283
References 285
8 Ultrahigh-energy Cosmic Neutrinos 289
8.1 Possible Sources of UHE Cosmic Neutrinos 289
8.1.1 The GZK Cutoff and UHE Neutrinos 290
8.1.2 Astrophysical Sources of UHE Neutrinos 292
8.1.3 Top-down Models and UHE Neutrinos 297
8.2 Detection of UHE Cosmic Neutrinos 298
8.2.1 A km3-scale UHE Neutrino Telescope 299
8.2.2 Identification of UHE Neutrino Flavors 300
8.2.3 Other Ways to Detect UHE Neutrinos 303
8.3 Flavor Distribution of UHE Cosmic Neutrinos 305
8.3.1 Flavor Issues of UHE Neutrinos 305
8.3.2 Flavor Efiects in New Physics Scenarios 309
8.4 Neutrinos and Multi-messenger Astronomy 313
8.4.1 Cosmic Neutrinos and Z-bursts 313
8.4.2 Cosmic Neutrinos and Gamma Rays 315
8.4.3 Neutrinos and Gravitational Waves 318
References 319
9 Big Bang Nucleosynthesis and Relic Neutrinos 323
9.1 Neutrinos in the Early Universe 323
9.1.1 Hubble's Law and the Friedmann Equations 324
9.1.2 The Energy Density of the Universe 325
9.1.3 The Age and Radius of the Universe 327
9.1.4 Radiation in the Early Universe 329
9.1.5 Neutrino Decoupling 332
9.2 Big Bang Nucleosynthesis 335
9.2.1 The Neutron-to-proton Ratio 336
9.2.2 Synthesis of the Light Nuclei 337
9.2.3 The Baryon Density and Neutrino Species 340
9.3 Possible Ways to Detect Relic Neutrinos 342
9.3.1 Cosmic Neutrino Background 342
9.3.2 Direct Detection of Relic Neutrinos 343
References 347
10 Neutrinos and Cosmological Structures 349
10.1 The Cosmic Microwave Background 349
10.1.1 Matter-radiation Equality 349
10.1.2 Formation of the CMB 351
10.1.3 Anisotropies of the CMB 353
10.1.4 Neutrino Species and Masses 357
10.2 Large-scale Structures and Dark Matter 359
10.2.1 Inflation and Density Fluctuations 360
10.2.2 LSS and Dark Matter 363
10.2.3 Constraints on Neutrino Masses 365
10.2.4 Sterile Neutrinos as Dark Matter 369
References 372
11 Cosmological Matter-antimatter Asymmetry 375
11.1 Baryon Asymmetry of the Universe 375
11.1.1 Constraints from Antimatter Searches 376
11.1.2 Observations from the CMB and BBN 378
11.2 Typical Mechanisms of Baryogenesis 379
11.2.1 Sakharov Conditions 379
11.2.2 Electroweak Baryogenesis 380
11.2.3 GUT Baryogenesis 386
11.2.4 The Affleck-Dine Mechanism 387
11.2.5 Leptogenesis 389
11.3 Baryogenesis via Leptogenesis 390
11.3.1 Thermal or Non-thermal Production 390
11.3.2 CP-violating Asymmetries 392
11.3.3 Boltzmann Equations 398
11.3.4 Baryon Number Asymmetry 405
11.4 Recent Developments in Leptogenesis 408
11.4.1 Triplet Leptogenesis 408
11.4.2 Resonant Leptogenesis 412
11.4.3 Soft Leptogenesis 413
11.4.4 Flavor Effects 415
References 417
Index 421