《现代傅里叶分析 第2版 英文》PDF下载

  • 购买积分:16 如何计算积分?
  • 作  者:(美)格拉法克斯(GrafakosL.)
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2011
  • ISBN:7510040603
  • 页数:507 页
图书介绍:

6 Smoothness and Function Spaces 1

6.1 Riesz and Bessel Potentials,Fractional Integrals 1

6.1.1 Riesz Potentials 2

6.1.2 Bessel Potentials 6

Exercises 9

6.2 Sobolev Spaces 12

6.2.1 Definition and Basic Properties of General Sobolev Spaces 13

6.2.2 Littlewood-Paley Characterization of Inhomogeneous Sobolev Spaces 16

6.2.3 Littlewood-Paley Characterization of Homogeneous Sobolev Spaces 20

Exercises 22

6.3 Lipschitz Spaces 24

6.3.1 Introduction to Lipschitz Spaces 25

6.3.2 Littlewood-Paley Characterization of Homogeneous Lipschitz Spaces 27

6.3.3 Littlewood-Paley Characterization of Inhomogeneous Lipschitz Spaces 31

Exercises 34

6.4 Hardy Spaces 37

6.4.1 Definition of Hardy Spaces 37

6.4.2 Quasinorm Equivalence of Several Maximal Functions 40

6.4.3 Consequences of the Characterizations of Hardy Spaces 53

6.4.4 Vector-Valued Hp and Its Characterizations 56

6.4.5 Singular Integrals on Hardy Spaces 58

6.4.6 The Littlewood-Paley Characterization of Hardy Spaces 63

Exercises 66

6.5 Besov-Lipschitz and Triebel-Lizorkin Spaces 68

6.5.1 Introduction of Function Spaces 68

6.5.2 Equivalence of Definitions 71

Exercises 76

6.6 Atomic Decomposition 78

6.6.1 The Space of Sequences Fα,q p 78

6.6.2 The Smooth Atomic Decomposition of Fα,q p 78

6.6.3 The Nonsmooth Atomic Decomposition of Fα,q p 82

6.6.4 Atomic Decomposition of Hardy Spaces 86

Exercises 90

6.7 Singular Integrals on Function Spaces 93

6.7.1 Singular Integrals on the Hardy Space H1 93

6.7.2 Singular Integrals on Besov-Lipschitz Spaces 96

6.7.3 Singular Integrals on Hp(Rn) 96

6.7.4 A Singular Integral Characterization of H1(Rn) 104

Exercises 111

7 BMO and Carleson Measures 117

7.1 Functions of Bounded Mean Oscillation 117

7.1.1 Definition and Basic Properties of BMO 118

7.1.2 The John-Nirenberg Theorem 124

7.1.3 Consequences of Theorem 7.1.6 128

Exercises 129

7.2 Duality between H1 and BMO 130

Exercises 135

7.3 Nontangential Maximal Functions and Carleson Measures 135

7.3.1 Definition and Basic Properties of Carleson Measures 136

7.3.2 BMO Functions and Carleson Measures 141

Exercises 144

7.4 The Sharp Maximal Function 146

7.4.1 Definition and Basic Properties of the Sharp Maximal Function 146

7.4.2 A Good Lambda Estimate for the Sharp Function 148

7.4.3 Interpolation Using BMO 151

7.4.4 Estimates for Singular Integrals Involving the Sharp Function 152

Exercises 155

7.5 Commutators of Singular Integrals with BMO Functions 157

7.5.1 An Orlicz-Type Maximal Function 158

7.5.2 A Pointwise Estimate for the Commutator 161

7.5.3 Lp Boundedness of the Commutator 163

Exercises 165

8 Singular Integrals of Nonconvolution Type 169

8.1 General Background and the Role of BMO 169

8.1.1 Standard Kernels 170

8.1.2 Operators Associated with Standard Kernels 175

8.1.3 Calderón-Zygmund Operators Acting on Bounded Functions 179

Exercises 181

8.2 Consequences of L2 Boundedness 182

8.2.1 Weak Type(1,1)and Lp Boundedness ofSingular Integrals 183

8.2.2 Boundedness of Maximal Singular Integrals 185

8.2.3 H1→L1 and L∞→BMO Boundedness of Singular Integrals 188

Exercises 191

8.3 The T(1)Theorem 193

8.3.1 Preliminaries and Statement of the Theorem 193

8.3.2 The Proof of Theorem 8.3.3 196

8.3.3 An Application 209

Exercises 211

8.4 Paraproducts 212

8.4.1 Introduction to Paraproducts 212

8.4.2 L2 Boundedness of Paraproducts 214

8.4.3 Fundamental Properties of Paraproducts 216

Exercises 222

8.5 An Almost Orthogonality Lemma and Applications 223

8.5.1 The Cotlar-Knapp-Stein Almost Orthogonality Lemma 224

8.5.2 An Application 227

8.5.3 Almost Orthogonality and the T(1)Theorem 230

8.5.4 Pseudodifferential Operators 233

Exercises 236

8.6 The Cauchy Integral of Calderón and the T(b) Theorem 238

8.6.1 Introduction of the Cauchy Integral Operator along a Lipschitz Curve 239

8.6.2 Resolution of the Cauchy Integral and Reduction of Its L2 Boundednessto a Quadratic Estimate 242

8.6.3 A Quadratic T(1)Type Theorem 246

8.6.4 A T(b) Theorem and the L2 Boundedness of the Cauchy Integral 250

Exercises 253

8.7 Square Roots of Elliptic Operators 256

8.7.1 Preliminaries and Statement of the Main Result 256

8.7.2 Estimates for Elliptic Operators on Rn 257

8.7.3 Reduction to a Quadratic Estimate 260

8.7.4 Reduction to a Carleson Measure Estimate 261

8.7.5 The T(b) Argument 267

8.7.6 The Proof of Lemma 8.7.9 270

Exercises 275

9 Weighted Inequalities 279

9.1 The Ap Condition 279

9.1.1 Motivation for the Ap Condition 280

9.1.2 Properties of Ap Weights 283

Exercises 291

9.2 Reverse H?lder Inequality and Consequences 293

9.2.1 The Reverse H?lder Property of Ap Weights 293

9.2.2 Consequences of the Reverse H?lder Property 297

Exercises 299

9.3 The A∞ Condition 302

9.3.1 The Class of A∞ Weights 302

9.3.2 Characterizations of A∞ Weights 304

Exercises 308

9.4 Weighted Norm Inequalities for Singular Integrals 309

9.4.1 A Review of Singular Integrals 309

9.4.2 A Good Lambda Estimate for Singular Integrals 310

9.4.3 Consequences of the Good Lambda Estimate 316

9.4.4 Necessity of the Ap Condition 321

Exercises 322

9.5 Further Properties of Ap Weights 324

9.5.1 Factorization of Weights 324

9.5.2 Extrapolation from Weighted Estimates on a Single Lp0 325

9.5.3 Weighted Inequalities Versus Vector-Valued Inequalities 332

Exercises 335

10 Boundedness and Convergence of Fourier Integrals 339

10.1 The Multiplier Problem for the Ball 340

10.1.1 Sprouting of Triangles 340

10.1.2 The counterexample 343

Exercises 350

10.2 Bochner-Riesz Means and the Carleson-Sj?lin Theorem 351

10.2.1 The Bochner-Riesz Kernel and Simple Estimates 351

10.2.2 The Carleson-Sj?lin Theorem 354

10.2.3 The Kakeya Maximal Function 359

10.2.4 Boundedness of a Square Function 361

10.2.5 The Proof of Lemma 10.2.5 363

Exercises 366

10.3 Kakeya Maximal Operators 368

10.3.1 Maximal Functions Associated with a Set of Directions 368

10.3.2 The Boundedness of ?ΣN on Lp(R2) 370

10.3.3 The Higher-Dimensional Kakeya Maximal Operator 378

Exercises 384

10.4 Fourier Transform Restriction and Bochner-Riesz Means 387

10.4.1 Necessary Conditions for Rp→q(Sn-1) to Hold 388

10.4.2 A Restriction Theorem for the Fourier Transform 390

10.4.3 Applications to Bochner-Riesz Multipliers 393

10.4.4 The Full Restriction Theoremon R2 396

Exercises 402

10.5 Almost Everywhere Convergence of Bochner-Riesz Means 403

10.5.1 A Counterexample for the Maximal Bochner-Riesz Operator 404

10.5.2 Almost Everywhere Summability of the Bochner-Riesz Means 407

10.5.3 Estimates for Radial Multipliers 411

Exercises 419

11 Time-Frequency Analysis and the Carleson-Hunt Theorem 423

11.1 Almost Everywhere Convergence of Fourier Integrals 423

11.1.1 Preliminaries 424

11.1.2 Discretization of the Carleson Operator 428

11.1.3 Linearization of a Maximal Dyadic Sum 432

11.1.4 Iterative Selection of Sets of Tiles with Large Mass and Energy 434

11.1.5 Proof of the Mass Lemma 11.1.8 439

11.1.6 Proof of Energy Lemma 11.1.9 441

11.1.7 Proof of the Basic Estimate Lemma 11.1.10 446

Exercises 452

11.2 Distributional Estimates for the Carleson Operator 456

11.2.1 The Main Theorem and Preliminary Reductions 456

11.2.2 The Proof of Estimate(11.2.8) 460

11.2.3 The Proof of Estimate(11.2.9) 462

11.2.4 The Proof of Lemma 11.2.2 463

Exercises 474

11.3 The Maximal Carleson Operator and Weighted Estimates 475

Exercises 479

Glossary 483

References 487

Index 501