《偏微分方程 第2卷 第2版 英文》PDF下载

  • 购买积分:18 如何计算积分?
  • 作  者:(美)泰勒著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2014
  • ISBN:9787510068140
  • 页数:614 页
图书介绍:这是一套3卷集经典名著,第一版曾影印出版,广受好评。第2版新增内容312页(3卷),这是第2卷。本卷在第1卷的基础上进一步讨论线性偏微分方程中的一些高等问题,其中包括伪微分算子、自伴算子的泛函分析和Wiener测度。书中还介绍了微分几何的基本概念、椭圆微分算子的谱理论、由障碍产生的波动散射理论、狄拉克算子用的指数理论、布朗运动和扩散等。读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。

7 Pseudodifferential Operators 1

1 The Fourier integral representation and symbol classes 2

2 Schwartz kernels of pseudodifferential operators 5

3 Adjoints and products 10

4 Elliptic operators and parametrices 15

5 L2-estimates 18

6 G?rding's inequality 22

7 Hyperbolic evolution equations 23

8 Egorov's theorem 26

9 Microlocal regularity 29

10 Operators on manifolds 33

11 The method of layer potentials 36

12 Parametrix for regular elliptic boundary problems 47

13 Parametrix for the heat equation 56

14 The Weyl calculus 67

15 Operators of harmonic oscillator type 80

References 88

8 Spectral Theory 91

1 The spectral theorem 92

2 Self-adjoint differential operators 100

3 Heat asymptotics and eigenvalue asymptotics 106

4 The Laplace operator on Sn 113

5 The Laplace operator on hyperbolic space 123

6 The harmonic oscillator 126

7 The quantum Coulomb problem 135

8 The Laplace operator on cones 149

References 171

9 Scattering by Obstacles 175

1 The scattering problem 177

2 Eigenfunction expansions 186

3 The scattering operator 192

4 Connections with the wave equation 197

5 Wave operators 205

6 Translation representations and the Lax-Phillips semigroup Z(t) 211

7 Integral equations and scattering poles 218

8 Trace formulas;the scattering phase 232

9 Scattering by a sphere 239

10 Inverse problemsⅠ 248

11 InverseproblemsⅡ 254

12 Scattering by rough obstacles 266

A Lidskii's trace theorem 275

References 277

10 Dirac Operators and Index Theory 281

1 Operators of Dirac type 283

2 Clifford algebras 289

3 Spinors 294

4 Weitzenbock formulas 300

5 Index of Dirac operators 306

6 Proof of the local index formula 309

7 The Chern-Gauss-Bonnet theorem 316

8 Spinc manifolds 320

9 The Riemann-Roch theorem 325

10 Direct attack in 2-D 338

11 Index of operators of harmonic oscillator type 345

References 358

11 Brownian Motion and Potential Theory 361

1 Brownian motion and Wiener measure 363

2 The Feynman-Kac formula 370

3 The Dirichlet problem and diffusion on domains with boundary 375

4 Martingales,stopping times,and the strong Markov property 384

5 First exit time and the Poisson integral 394

6 Newtonian capacity 398

7 Stochastic integrals 412

8 Stochastic integrals,Ⅱ 423

9 Stochastic differential equations 430

10 Application to equations of diffusion 437

A The Trotter product formula 448

References 454

12 The ?-Neumann Problem 457

A Elliptic complexes 460

1 The ?-complex 465

2 Morrey's inequality,the Levi form,and strong pseudoconvexity 469

3 The 1/2-estimate and some consequences 472

4 Higher-order subelliptic estimates 476

5 Regularity viaelliptic regularization 480

6 The Hodge decomposition and the ?-equation 483

7 The Bergman projection and Toeplitz operators 487

8 The ?-Neumann problem on(0,q)-forms 494

9 Reduction to pseudodifferential equations on the boundary 503

10 The ?-equation on complex manifolds and almost complex manifolds 516

B Complements on the Levi form 527

C The Neumann operator for the Dirichlet problem 531

References 535

C Connections and Curvature 539

1 Covariant derivatives and curvature on general vector bundles 540

2 Second covariant derivatives and covariant-exterior derivatives 546

3 The curvature tensor of a Riemannian manifold 548

4 Geometry of submanifolds and subbundles 560

5 The Gauss-Bonnet theorem for surfaces 574

6 The principal bundle picture 586

7 The Chern-Weil construction 594

8 The Chern-Gauss-Bonnet theorem 598

References 608

Index 611