《先进碳材料科学与工程 英文版》PDF下载

  • 购买积分:14 如何计算积分?
  • 作  者:(日)稻垣道夫等著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2013
  • ISBN:9787302347170
  • 页数:434 页
图书介绍:本书由于富勒烯和石墨烯分别获得了1996年诺贝尔化学奖和2010年诺贝尔物理奖,加上1991年发现的纳米炭管,引发了世界范围内的纳米科技革命。碳材料无论在科技界还是工业界都是热点,各国投入了大量的财力物力进行研究开发。本书结合作者们在碳材料科学与工程的最新研究成果,重点介绍了碳材料的合成、表征和应用方面的新近进展,深入浅出、图文并茂,适合于广大读者自学或者用作教材。

CHAPTER 1 Introduction 1

1.1 Classification of carbon materials 2

1.2 Nanotexture of carbon materials 5

1.3 Microtexture of carbon materials 8

1.4 Specification of carbon materials 10

1.5 Construction of the present book 12

References 12

CHAPTER 2 Carbon Nanotubes:Synthesis and Formation 15

2.1 Synthesis of carbon nanotubes 16

2.2 Formation of carbon nanotubes 22

2.2.1 Formation into yarns 22

2.2.2 Formation into sheets 24

2.2.3 Formation into sponges 29

2.3 Applications of carbon nanotubes 30

2.4 Concluding remarks 35

References 36

CHAPTER 3 Graphene:Synthesis and Preparation 41

3.1 Preparation through the cleavage of graphite 42

3.2 Preparation through the exfoliation of graphite 45

3.2.1 Preparation using graphite oxides 45

3.2.2 Preparation using graphite intercalation compounds 49

3.3 Synthesis through chemical vapor deposition 50

3.4 Synthesis through the organic route 56

3.5 Preparation through other processes 57

3.6 Concluding remarks 59

References 62

CHAPTER 4 Carbonization Under Pressure 67

4.1 Carbonization under built-up pressure 68

4.1.1 Setup for carbonization under pressure 68

4.1.2 Optical texture and carbonization yield 68

4.1.3 Particle morphology 70

4.2 Carbonization under hydrothermal conditions 74

4.3 Carbonization under supercritical conditions 78

4.4 Concluding remarks 79

4.4.1 Temperature and pressure conditions for carbonization 79

4.4.2 Composition of precursors for the formation of carbon spheres 81

References 84

CHAPTER 5 Stress Graphitization 87

5.1 Graphitization under pressure 88

5.1.1 Structural change in carbons 88

5.1.2 Mechanism 93

5.2 Graphitization in coexistence with minerals under pressure 96

5.2.1 Coexistence with calcium compounds 96

5.2.2 Coexistence with other minerals 99

5.2.3 Mechanism for acceleration of graphitization 99

5.3 Stress graphitization in carbon/carbon composites 102

5.3.1 Acceleration of graphitization 102

5.3.2 Mechanism 105

5.4 Concluding remarks 107

5.4.1 Graphitization under pressure 107

5.4.2 Occurrence of graphite in nature 108

5.4.3 Stress graphitization in carbon/carbon composites 109

References 109

CHAPTER 6 Glass-like Carbon:Its Activation and Graphitization 111

6.1 Activation of glass-like carbon 111

6.1.1 Glass-like carbon spheres 111

6.1.2 Activation in a flow of dry air 113

6.1.3 Activation in a flow of wet air 117

6.1.4 Activation process 118

6.1.5 Direct observation of micropores 121

6.1.6 Two-step activation 123

6.2 Graphitization of glass-like carbons 124

6.2.1 Graphitization through melting 124

6.2.2 Graphitization under high pressure 126

6.2.3 Graphitization in C/C composites 128

6.3 Concluding remarks 130

References 132

CHAPTER 7 Template Carbonization:Morphology and Pore Control 133

7.1 Template carbonization for morphological control 134

7.1.1 Inorganic layered compounds 134

7.1.2 Anodic aluminum oxide films 135

7.1.3 Organic foams 138

7.2 Template carbonization for pore-structure control 139

7.2.1 Zeolites 139

7.2.2 Mesoporous silicas 142

7.2.3 MgO 145

7.2.4 Block copolymer surfactants(soft templates) 149

7.2.5 Metal-organic frameworks 153

7.2.6 Other templates 154

7.3 Concluding remarks 155

References 159

CHAPTER 8 Carbon Nanofibers Via Electrospinning 165

8.1 Carbon nanofibers synthesized via electrospinning 166

8.1.1 Polyacrylonitrile 166

8.1.2 Pitch 170

8.1.3 Polyimides 171

8.1.4 Poly(vinylidene fluoride) 171

8.1.5 Phenolic resins 172

8.2 Applications 172

8.2.1 Electrode materials for electrochemical capacitors 172

8.2.2 Anode materials for lithium-ion rechargeable batteries 175

8.2.3 Catalyst support 178

8.2.4 Composite with carbon nanotubes 180

8.3 Concluding remarks 180

8.3.1 Carbon precursors 180

8.3.2 Pore-structure control 182

8.3.3 Improvement of electrical conductivity 184

8.3.4 Loading of metallic species 185

References 186

CHAPTER 9 Carbon Foams 189

9.1 Preparation of carbon foams 190

9.1.1 Exfoliation and compaction of graphite 190

9.1.2 Blowing of carbon precursors 193

9.1.3 Template carbonization 198

9.2 Applications of carbon foams 201

9.2.1 Thermal energy storage 202

9.2.2 Electrodes 207

9.2.3 Adsorption 208

9.2.4 Other applications 209

9.3 Concluding remarks 210

References 212

CHAPTER 10 Nanoporous Carbon Membranes and Webs 215

10.1 Synthesis 216

10.1.1 Pyrolysis and carbonization of organic precursors 216

10.1.2 Templating 219

10.1.3 Chemical and physical vapor deposition 222

10.1.4 Formation of carbon nanotubes and nanofibers 223

10.2 Applications 224

10.2.1 Adsorbents 224

10.2.2 Separation membranes 225

10.2.3 Chemical sensors and biosensors 228

10.2.4 Electrodes 229

10.2.5 Other applications 231

10.3 Concluding remarks 231

References 233

CHAPTER 11 Carbon Materials for Electrochemical Capacitors 237

11.1 Symmetrical supercapacitors 239

11.1.1 Activated carbons 239

11.1.2 Templated carbons 243

11.1.3 Other carbons 246

11.1.4 Carbons containing foreign atoms 248

11.1.5 Carbon nanotubes and nanofibers 252

11.2 Asymmetrical supercapacitors 254

11.3 Asymmetrical capacitors 256

11.4 Carbon-coating of electrode materials 258

11.5 Concluding remarks 260

References 261

CHAPTER 12 Carbon Materials in Lithium-ion Rechargeable Batteries 267

12.1 Anode materials 268

12.1.1 Materials 268

12.1.2 Carbon coating of graphite 270

12.1.3 Carbon coating of Li4Ti5O12 275

12.2 Cathode materials 278

12.2.1 Materials 278

12.2.2 Carbon coating of LiFePO4 279

12.3 Concluding remarks 283

References 284

CHAPTER 13 Carbon Materials in Photocatalysis 289

13.1 TiO2-loaded activated carbons 290

13.2 Mixture of activated carbon and TiO2 295

13.3 Carbon-doped TiO2 297

13.4 Carbon-coated TiO2 300

13.5 Synthesis of novel photocatalysts via carbon coating 305

13.5.1 Carbon-coated TinO2n-1 305

13.5.2 Carbon-coated W18O49 305

13.5.3 TiO2 co-modified by carbon and iron 305

13.6 Concluding remarks 306

References 308

CHAPTER 14 Carbon Materials for Spilled-oil Recovery 313

14.1 Sorption capacity for heavy oils 314

14.1.1 Exfoliated graphite 314

14.1.2 Carbonized fir fibers 318

14.1.3 Carbon fibers 318

14.1.4 Carbon nanotube sponge 319

14.1.5 Other carbon materials 320

14.2 Selectivity of sorption 320

14.3 Sorption kinetics 321

14.4 Cycle performance of carbon sorbents and heavy oils 323

14.5 Preliminary experiments for practical recovery of spilled heavy oils 326

14.5.1 Exfoliated graphite packed into a plastic bag 326

14.5.2 Formed exfoliated graphite 327

14.5.3 Heavy oil sorption from contaminated sand 328

14.5.4 Sorption of heavy-oil mousse 329

14.5.5 TiO2-loaded exfoliated graphite 329

14.6 Concluding remarks 329

14.6.1 Comparison among carbon materials 329

14.6.2 Mechanism of heavy oil sorption 331

14.6.3 Comparison with other materials 332

References 333

CHAPTER 15 Carbon Materials for Adsorption of Molecules and Ions 335

15.1 Adsorption and storage of hydrogen 336

15.2 Adsorption and storage of methane and methane hydrate 339

15.3 Adsorption and storage of CO2 343

15.4 Adsorption of organic molecules 346

15.4.1 Organic gases(including VOCs) 346

15.4.2 Organic molecules in water 350

15.5 Adsorption and removal of heavy-metal ions in water 353

15.6 Capacitive deionization 354

15.7 Concluding remarks 356

References 357

CHAPTER 16 Highly Oriented Graphite with High Thermal Conductivity 363

16.1 Preparation 364

16.2 Characterization 366

16.3 Carbon materials with high thermal conductivity 370

16.3.1 Pyrolytic graphite 370

16.3.2 Polyimide-derived graphite 373

16.3.3 Natural graphite and its composites 374

16.3.4 Carbon fibers 376

16.3.5 Carbon nanotubes and graphene 378

16.3.6 Diamond and diamond-like carbons 379

16.4 Concluding remarks 382

References 384

CHAPTER 17 Isotropic High-density Graphite and Nuclear Applications 387

17.1 Production 388

17.2 Properties 392

17.3 Nuclear applications 400

17.3.1 Fission reactors 400

17.3.2 Fusion reactors 405

17.4 Concluding remarks 406

References 409

INDEX 411