CHAPTER 1 Introduction 1
1.1 Classification of carbon materials 2
1.2 Nanotexture of carbon materials 5
1.3 Microtexture of carbon materials 8
1.4 Specification of carbon materials 10
1.5 Construction of the present book 12
References 12
CHAPTER 2 Carbon Nanotubes:Synthesis and Formation 15
2.1 Synthesis of carbon nanotubes 16
2.2 Formation of carbon nanotubes 22
2.2.1 Formation into yarns 22
2.2.2 Formation into sheets 24
2.2.3 Formation into sponges 29
2.3 Applications of carbon nanotubes 30
2.4 Concluding remarks 35
References 36
CHAPTER 3 Graphene:Synthesis and Preparation 41
3.1 Preparation through the cleavage of graphite 42
3.2 Preparation through the exfoliation of graphite 45
3.2.1 Preparation using graphite oxides 45
3.2.2 Preparation using graphite intercalation compounds 49
3.3 Synthesis through chemical vapor deposition 50
3.4 Synthesis through the organic route 56
3.5 Preparation through other processes 57
3.6 Concluding remarks 59
References 62
CHAPTER 4 Carbonization Under Pressure 67
4.1 Carbonization under built-up pressure 68
4.1.1 Setup for carbonization under pressure 68
4.1.2 Optical texture and carbonization yield 68
4.1.3 Particle morphology 70
4.2 Carbonization under hydrothermal conditions 74
4.3 Carbonization under supercritical conditions 78
4.4 Concluding remarks 79
4.4.1 Temperature and pressure conditions for carbonization 79
4.4.2 Composition of precursors for the formation of carbon spheres 81
References 84
CHAPTER 5 Stress Graphitization 87
5.1 Graphitization under pressure 88
5.1.1 Structural change in carbons 88
5.1.2 Mechanism 93
5.2 Graphitization in coexistence with minerals under pressure 96
5.2.1 Coexistence with calcium compounds 96
5.2.2 Coexistence with other minerals 99
5.2.3 Mechanism for acceleration of graphitization 99
5.3 Stress graphitization in carbon/carbon composites 102
5.3.1 Acceleration of graphitization 102
5.3.2 Mechanism 105
5.4 Concluding remarks 107
5.4.1 Graphitization under pressure 107
5.4.2 Occurrence of graphite in nature 108
5.4.3 Stress graphitization in carbon/carbon composites 109
References 109
CHAPTER 6 Glass-like Carbon:Its Activation and Graphitization 111
6.1 Activation of glass-like carbon 111
6.1.1 Glass-like carbon spheres 111
6.1.2 Activation in a flow of dry air 113
6.1.3 Activation in a flow of wet air 117
6.1.4 Activation process 118
6.1.5 Direct observation of micropores 121
6.1.6 Two-step activation 123
6.2 Graphitization of glass-like carbons 124
6.2.1 Graphitization through melting 124
6.2.2 Graphitization under high pressure 126
6.2.3 Graphitization in C/C composites 128
6.3 Concluding remarks 130
References 132
CHAPTER 7 Template Carbonization:Morphology and Pore Control 133
7.1 Template carbonization for morphological control 134
7.1.1 Inorganic layered compounds 134
7.1.2 Anodic aluminum oxide films 135
7.1.3 Organic foams 138
7.2 Template carbonization for pore-structure control 139
7.2.1 Zeolites 139
7.2.2 Mesoporous silicas 142
7.2.3 MgO 145
7.2.4 Block copolymer surfactants(soft templates) 149
7.2.5 Metal-organic frameworks 153
7.2.6 Other templates 154
7.3 Concluding remarks 155
References 159
CHAPTER 8 Carbon Nanofibers Via Electrospinning 165
8.1 Carbon nanofibers synthesized via electrospinning 166
8.1.1 Polyacrylonitrile 166
8.1.2 Pitch 170
8.1.3 Polyimides 171
8.1.4 Poly(vinylidene fluoride) 171
8.1.5 Phenolic resins 172
8.2 Applications 172
8.2.1 Electrode materials for electrochemical capacitors 172
8.2.2 Anode materials for lithium-ion rechargeable batteries 175
8.2.3 Catalyst support 178
8.2.4 Composite with carbon nanotubes 180
8.3 Concluding remarks 180
8.3.1 Carbon precursors 180
8.3.2 Pore-structure control 182
8.3.3 Improvement of electrical conductivity 184
8.3.4 Loading of metallic species 185
References 186
CHAPTER 9 Carbon Foams 189
9.1 Preparation of carbon foams 190
9.1.1 Exfoliation and compaction of graphite 190
9.1.2 Blowing of carbon precursors 193
9.1.3 Template carbonization 198
9.2 Applications of carbon foams 201
9.2.1 Thermal energy storage 202
9.2.2 Electrodes 207
9.2.3 Adsorption 208
9.2.4 Other applications 209
9.3 Concluding remarks 210
References 212
CHAPTER 10 Nanoporous Carbon Membranes and Webs 215
10.1 Synthesis 216
10.1.1 Pyrolysis and carbonization of organic precursors 216
10.1.2 Templating 219
10.1.3 Chemical and physical vapor deposition 222
10.1.4 Formation of carbon nanotubes and nanofibers 223
10.2 Applications 224
10.2.1 Adsorbents 224
10.2.2 Separation membranes 225
10.2.3 Chemical sensors and biosensors 228
10.2.4 Electrodes 229
10.2.5 Other applications 231
10.3 Concluding remarks 231
References 233
CHAPTER 11 Carbon Materials for Electrochemical Capacitors 237
11.1 Symmetrical supercapacitors 239
11.1.1 Activated carbons 239
11.1.2 Templated carbons 243
11.1.3 Other carbons 246
11.1.4 Carbons containing foreign atoms 248
11.1.5 Carbon nanotubes and nanofibers 252
11.2 Asymmetrical supercapacitors 254
11.3 Asymmetrical capacitors 256
11.4 Carbon-coating of electrode materials 258
11.5 Concluding remarks 260
References 261
CHAPTER 12 Carbon Materials in Lithium-ion Rechargeable Batteries 267
12.1 Anode materials 268
12.1.1 Materials 268
12.1.2 Carbon coating of graphite 270
12.1.3 Carbon coating of Li4Ti5O12 275
12.2 Cathode materials 278
12.2.1 Materials 278
12.2.2 Carbon coating of LiFePO4 279
12.3 Concluding remarks 283
References 284
CHAPTER 13 Carbon Materials in Photocatalysis 289
13.1 TiO2-loaded activated carbons 290
13.2 Mixture of activated carbon and TiO2 295
13.3 Carbon-doped TiO2 297
13.4 Carbon-coated TiO2 300
13.5 Synthesis of novel photocatalysts via carbon coating 305
13.5.1 Carbon-coated TinO2n-1 305
13.5.2 Carbon-coated W18O49 305
13.5.3 TiO2 co-modified by carbon and iron 305
13.6 Concluding remarks 306
References 308
CHAPTER 14 Carbon Materials for Spilled-oil Recovery 313
14.1 Sorption capacity for heavy oils 314
14.1.1 Exfoliated graphite 314
14.1.2 Carbonized fir fibers 318
14.1.3 Carbon fibers 318
14.1.4 Carbon nanotube sponge 319
14.1.5 Other carbon materials 320
14.2 Selectivity of sorption 320
14.3 Sorption kinetics 321
14.4 Cycle performance of carbon sorbents and heavy oils 323
14.5 Preliminary experiments for practical recovery of spilled heavy oils 326
14.5.1 Exfoliated graphite packed into a plastic bag 326
14.5.2 Formed exfoliated graphite 327
14.5.3 Heavy oil sorption from contaminated sand 328
14.5.4 Sorption of heavy-oil mousse 329
14.5.5 TiO2-loaded exfoliated graphite 329
14.6 Concluding remarks 329
14.6.1 Comparison among carbon materials 329
14.6.2 Mechanism of heavy oil sorption 331
14.6.3 Comparison with other materials 332
References 333
CHAPTER 15 Carbon Materials for Adsorption of Molecules and Ions 335
15.1 Adsorption and storage of hydrogen 336
15.2 Adsorption and storage of methane and methane hydrate 339
15.3 Adsorption and storage of CO2 343
15.4 Adsorption of organic molecules 346
15.4.1 Organic gases(including VOCs) 346
15.4.2 Organic molecules in water 350
15.5 Adsorption and removal of heavy-metal ions in water 353
15.6 Capacitive deionization 354
15.7 Concluding remarks 356
References 357
CHAPTER 16 Highly Oriented Graphite with High Thermal Conductivity 363
16.1 Preparation 364
16.2 Characterization 366
16.3 Carbon materials with high thermal conductivity 370
16.3.1 Pyrolytic graphite 370
16.3.2 Polyimide-derived graphite 373
16.3.3 Natural graphite and its composites 374
16.3.4 Carbon fibers 376
16.3.5 Carbon nanotubes and graphene 378
16.3.6 Diamond and diamond-like carbons 379
16.4 Concluding remarks 382
References 384
CHAPTER 17 Isotropic High-density Graphite and Nuclear Applications 387
17.1 Production 388
17.2 Properties 392
17.3 Nuclear applications 400
17.3.1 Fission reactors 400
17.3.2 Fusion reactors 405
17.4 Concluding remarks 406
References 409
INDEX 411