《有色金属生物冶金 全英文》PDF下载

  • 购买积分:8 如何计算积分?
  • 作  者:薛济来主编
  • 出 版 社:北京:冶金工业出版社
  • 出版年份:2012
  • ISBN:9787502461539
  • 页数:123 页
图书介绍:有色生物冶金主要采用生物技术方法来进行矿物中有色金进行提取、富集、分离和回收利用,通常由微生物来进行矿石的细菌氧化或生物氧化。生物冶金方法工艺成本低、污染少、资源利用率高。目前已应用于难处理金矿、铜硫化矿等工业应用。生物冶金方法具有超过常规处理贫矿的技术优势,正发展成为国际上有色冶金研究的热点之一。本书主要内容包括:有色生物冶金技术基础、有色生物冶金方法、有色生物冶金技术的工艺特征、有色生物冶金技术的工业应用(提取金、铜、镍、锌)。课文均加以简要注释,以方便自学。文后附相关专业词汇。本书适用于有色冶金、冶金工程、工业生态、矿物工程、环境工程等专业的高年级本科和研究生科研和双语教学,也可供研发人员和生产技术人员参考。

1 Biohydrometallurgy and Bacteria 1

1.1 Introduction 1

1.2 Development in Hydrometallurgy 2

1.3 Bacteria and Phylogeny 4

1.4 Nutrition 7

1.4.1 Carbon nutrition sources 7

1.4.2 Nitrogen nutrition sources 7

1.5 Energy Sources 8

1.5.1 Iron oxidation 8

1.5.2 Sulfur oxidation 9

1.5.3 Electron donors and electron acceptors 10

1.5.4 Mineral oxidating ability 11

1.6 Mesophilic and Acidophiles in Mineral Bioleaching 12

1.7 Summary 15

Questions 15

Note 15

2 Surface Chemistry of Bacterial Leaching 17

2.1 Introduction 17

2.2 Adhesion and Attachment of Bacteria to Mineral Surfaces 18

2.3 Theory of Bacterial Attachment to Surfaces 20

2.4 Biofilm Colloid Formation on Bacterial Cells 26

2.5 Summary 27

Questions 27

Note 27

3 Electrochemistry of Mineral Dissolution and Bioleaching 29

3.1 Introduction 29

3.2 Electrochemical Mechanism of Oxidative and Reductive Reactions 30

3.2.1 Anodic and cathodic reactions 30

3.2.2 Influence of the electronic structure of the mineral on the dissolution rate 31

3.3 Applications of Electrochemical Mechanism in Leaching 32

3.3.1 Chemical leaching of pyrite by ferric ions 32

3.3.2 Effect of bacterial action on the mixed potential of pyrite 33

3.3.3 Effect of electrochemical bioleaching on the copper recovery 35

3.4 Electrochemical Kinetics and Modeling 35

3.4.1 Kinetics of the oxidative dissolution of sphalerite 35

3.4.2 Electrochemical kinetics and model of bacterial leaching 37

3.5 Summary 39

Questions 39

Note 40

4 Biohydrometallurgy of Copper 41

4.1 Introduction 41

4.2 Definitions and Mineralogy Related to Copper Leaching 41

4.2.1 Pyrite 42

4.2.2 Secondary sulfides 42

4.2.3 Primary sulfides 43

4.3 Physico-Chemical Leaching Variables 43

4.3.1 Surface area 43

4.3.2 Acid levels 44

4.3.3 Oxidants 44

4.3.4 Agglomeration 44

4.3.5 Curing time 45

4.3.6 Permeability 45

4.4 Bacterial Leaching Variables 45

4.4.1 Acidity 45

4.4.2 Oxygen 46

4.4.3 Nutrition 46

4.4.4 Heat 47

4.4.5 Mineralogy 47

4.4.6 Bacterial inoculation 47

4.4.7 Iron 48

4.5 Heap Operating Variables 48

4.5.1 Irrigation distribution 48

4.5.2 Solution stacking 49

4.5.3 Solution collection 49

4.5.4 Pad stacking/configuration 50

4.6 Leach Solution Processing 50

4.6.1 Copper cementation 51

4.6.2 Direct electrowinning 51

4.6.3 Solvent extraction 51

4.6.4 Electrowinning 53

4.7 Commercial Installations and Environmental Considerations 54

4.7.1 In situ leaching 55

4.7.2 Dump leaching 56

4.7.3 Heap leaching 56

4.8 Summary 58

Questions 58

Note 58

5 Biooxidation of Gold-Bearing Ores 60

5.1 Introduction 60

5.2 BIOX? Bacterial Culture 61

5.3 Chemical Reactions and Process Control 63

5.3.1 Chemical reactions 63

5.3.2 Influence of ore mineralogy 64

5.3.3 Effect of temperature and cooling requirements 65

5.3.4 pH control 66

5.3.5 Oxygen supply 67

5.4 Operations Conditions and Process Requirements 68

5.4.1 Bioreactor configuration 68

5.4.2 Rate of sulfide mineral oxidation and gold dissolution 69

5.4.3 General process requirements 70

5.4.4 Effects of chloride and arsenic on BIOX? process 71

5.5 Summary 72

Questions 73

Note 73

6 Biohydrometallurgical Processing of Colt,Nickel and Zinc 74

6.1 Introduction 74

6.2 Cobalt Bioleaching with Autotrophic and Mixotrophic Bacteria 75

6.3 Nickel Bioleaching with Autotrophic and Mixotrophic Bacteria 77

6.4 Zinc Bioleaching with Autotrophic and Mixotrophic Bacteria 78

6.5 Metal Mobilization by Microbially Generated Acids/Ligands 80

6.6 Summary 84

Questions 84

Note 85

7 Biohydrometallurgical Recovery of Heavy Metals from Industrial Wastes 86

7.1 Introduction 86

7.2 Metal Recovery from Waste Sludge and Fly Ash 87

7.3 Metal Recovery from Mine Waste and Nuclear Waste 89

7.4 Metal Recovery from River Sediments and Metal Finishing Waste Water 92

7.5 Summary 94

Questions 94

Note 95

8 Biohydrometallurgical Recovery of Value Metals from Secondary Sources 96

8.1 Introduction 96

8.2 Metal Recovery from Electronic Wastes 96

8.3 Metal Recovery from Battery Wastes 100

8.4 Metal Recovery from Spent Petroleum Refinery Catalyst 103

8.5 Summary 105

Questions 106

Note 106

Appendix 107

References 122