19.01[467] Surface embeddability of graphs via tree-travels 9043
19.02[468] Flexibility of circular graphs C(2n,2) on the projective plane&Y.Yang 9052
19.03[469] Number of embeddings of wheel graphs on surfaces of small genus&Y.Yang 9061
19.04[470] Surface embeddability of graphs via joint trees 9086
19.05[471] Surface embeddability of graphs via reductions 9092
19.06[472] Up-embeddability and independent number of simple graphs&S.X.Lv 9099
19.07[473] Homology and cohomology on graphs 9106
19.08[475] Vertex splitting and upper embeddable graphs&G.H Dong,N.Wang,Y.QHuang,H.Ren 9112
19.09[477] A equation for enumerating loopless unicursal maps&Y.L.Zhang,J.L.Cai 9126
19.10[478] Enumeration of Eulerian planar near-quadrangulations&Y.L.Zhang,R.X.Hao 9130
专著[486] Elements of Algebraic Graphs 9134
19.11 Preface 9136
19.12 Contents 9140
19.13 Chapter 1 Abstract graphs 9145
19.14 Chapter 2 Abstract maps 9170
19.15 Chapter 3 Duality 9187
19.16 Chapter 4 Orientability 9213
19.17 Chapter 5 Orientable maps 9227
19.18 Chapter 6 Nonorientable maps 9241
19.19 Chapter 7 Isomorphisms of maps 9254
19.20 Chapter 8 Asymmetrization 9273
19.21 Chapter 9 Asymmmetrized petal bundles 9287
19.22 Chapter 10 Asymmetrized maps 9303
19.23 Chapter 11 Maps within symmetry 9325
19.24 Chapter 12 Genus polynomials 9334
19.25 Chapter 13 Census with partitions 9344
19.26 Chapter 14 Equations with partitions 9367
19.27 Chapter 15 Upper maps of a graph 9389
19.28 Chapter 16 Genera of graphs 9403
19.29 Chapter 17 Isogemial graphs 9422
19.30 Chapter 18 Surface embeddability 9433
19.31 Appendix 1 Concepts of polyhedra,surfaces,embeddings and maps 9462
19.32 Appendix 2 Table of genus polynomials for embeddings and rnaps of small size 9472
19.33 Appendix 3 Atlas of rooted and unrooted Maps for small graphs 9484
19.34 Bibliography 9532
19.35 Terminology 9538
19.36 Author index 9544