《微积分》PDF下载

  • 购买积分:13 如何计算积分?
  • 作  者:姚志鹏,何丹,崔唯主编;陈盛双主审
  • 出 版 社:武汉:华中师范大学出版社
  • 出版年份:2015
  • ISBN:9787562270102
  • 页数:379 页
图书介绍:本书是按照培养高层次应用型人才的目标,考虑新时期高校自身的教学特点和学生的实际状况,结合编者多年的教学经验编写而成。全书共分十章,内容包括:函数与极限、导数与微分、中值定理与导数的应用、不定积分、定积分定积分的应用、微分方程多元函数微分学、二重积分和无穷级数。各章节后面均配有较多不同类型的习题,书末附有习题参考答案和常用的基本数学公式,有助于读者更好地掌握高等数学知识。本书概念引入自然,理论条理清晰,讲解深入浅出,可作为相关院校本科生的的数学教材,亦可作为其他数学爱好者的参考用书。

第一章 函数与极限 1

第一节 函数 1

一、函数概念及其表示 1

二、函数的几种特性 4

三、初等函数 5

四、极坐标与参数方程 8

习题 11

第二节 数列的极限 12

一、数列极限的定义 12

二、收敛数列的性质 14

习题二 15

第三节 函数的极限 16

一、函数极限的定义 16

二、函数极限的性质 20

习题三 20

第四节 无穷小与无穷大 21

一、无穷小 21

二、无穷大 22

习题四 23

第五节 极限运算法则 24

习题五 26

第六节 极限存在准则两个重要极限 27

一、极限存在准则 27

二、两个重要极限 28

习题六 32

第七节 无穷小的比较 32

习题七 34

第八节 函数的连续性与间断点 35

一、函数的连续性 35

二、函数的间断点 37

习题八 39

第九节 连续函数的运算与初等函数的连续性 40

习题九 42

第十节 闭区间上连续函数的性质 43

一、有界性与最大值最小值定理 43

二、零点定理与介值定理 43

习题十 45

总习题一 45

第二章 导数与微分 48

第一节 导数的概念 48

一、引例 48

二、导线的定义 49

三、导数的几何意义 53

四、函数可导性与连续性的关系 54

习题 56

第二节 函数的求导法则 57

一、函数的和、差、积、商的求导法则 57

二、反函数的求导法则 59

三、复合函数的求导法则 60

四、基本求导法则与导数公式 63

习题二 64

第三节 高阶导数 65

习题三 68

第四节 隐函数及由参数方程确定的函数的导数 69

一、隐函数的导数 69

二、对数求导法 71

三、由参数方程所确定的函数的导数 73

习题四 75

第五节 函数的微分 76

一、微分的定义 76

二、微分的几何意义 78

三、基本初等函数的微分公式与微分的运算法则 79

四、微分在近似计算中的应用 82

习题五 83

总习题二 84

第三章 中值定理与导数的应用 87

第一节 微分中值定理 87

一、罗尔定理 87

二、拉格朗日中值定理 90

三、柯西中值定理 92

习题 93

第二节 洛必达法则 94

一、x→a时的0/0型未定式 94

二、x→∞时的0/0型未定式及x→a或x→∞时的∞/∞型未定式 96

三、其他型未定式 97

习题二 99

第三节 函数的单调性 100

习题三 103

第四节 函数的极值与最大值最小值 104

一、函数的极值及其求法 104

二、最大值最小值问题 108

习题四 110

第五节 曲线的凹凸性与拐点 111

习题五 115

第六节 函数图形的描绘 115

一、曲线的渐近线 115

二、函数图形的描绘 116

习题六 119

第七节 导数在经济分析中的应用 119

一、经济学中的常用函数 119

二、边际函数 120

三、函数的弹性 124

习题七 126

总习题三 127

第四章 不定积分 130

第一节 不定积分的概念与性质 130

一、原函数与不定积分的概念 130

二、基本积分表 132

三、不定积分的性质 134

习题 136

第二节 换元积分法 137

一、第一类换元积分法 138

二、第二类换元积分法 143

习题二 148

第三节 分部积分法 150

习题三 153

总习题四 154

第五章 定积分 156

第一节 定积分的概念与性质 156

一、定积分问题举例 156

二、定积分的定义 158

三、定积分的几何意义 159

四、定积分的性质 159

习题 163

第二节 微积分基本公式 164

一、积分上限函数及其导数 165

二、牛顿莱布尼茨公式 167

习题二 169

第三节 定积分的计算 171

一、定积分的换元积分法 171

二、定积分的分部积分法 175

三、反常积分 177

习题三 182

总习题五 184

第六章 定积分的应用 187

第一节 定积分的微元法 187

第二节 定积分在几何学中的应用 188

一、平面图形的面积 188

二、旋转体的体积 192

三、平面曲线的弧长 194

习题二 197

第三节 定积分在经济学中的应用 198

一、由变化率求总量 198

二、由边际函数求总量函数 199

习题三 200

总习题六 201

第七章 微分方程 203

第一节 微分方程的基本概念 203

一、引例 203

二、微分方程及其类型 204

三、微分方程的解 206

习题一 207

第二节 一阶微分方程 208

一、可分离变量的微分方程 208

二、齐次方程 210

三、一阶线性微分方程 212

习题二 216

第三节 可降阶的高阶微分方程 217

一、y(n)=f(x)型的微分方程 217

二、y″=f(x,y′)型的微分方程 218

三、y″=f(y,y′)型的微分方程 219

习题三 220

第四节 二阶常系数线性微分方程 221

一、解的结构 221

二、二阶常系数齐次线性微分方程 223

三、二阶常系数非齐次线性微分方程 224

习题四 228

第五节 一阶差分方程 230

一、基本概念 230

二、一阶常系数线性差分方程 232

习题五 235

总习题七 236

第八章 多元函数微分学 239

第一节 空间解析几何简介 239

一、空间直角坐标系 239

二、空间两点间的距离 240

三、曲面与方程 241

第二节 多元函数的概念 245

一、多元函数的基本概念 245

二、二元函数的极限 248

三、二元函数的连续性 250

习题二 251

第三节 偏导数 252

一、偏导数的概念 252

二、高阶偏导数 256

习题三 257

第四节 全微分 258

一、全微分的概念 258

二、全微分在近似计算中的应用 260

习题四 261

第五节 多元复合函数的求导法则 262

习题五 266

第六节 多元隐函数的求导法则 267

习题六 270

第七节 多元函数的极值及其求法 270

一、二元函数的极值 270

二、二元函数的最大值与最小值 272

三、条件极值 拉格朗日乘数法 274

习题七 278

总习题八 278

第九章 二重积分 282

第一节 二重积分的概念与性质 282

一、二重积分的概念 282

二、二重积分的性质 284

习题 287

第二节 二重积分的计算 288

一、利用直角坐标计算二重积分 288

二、利用极坐标计算二重积分 295

习题二 300

总习题九 302

第十章 无穷级数 306

第一节 常数项级数的概念和性质 306

一、常数项级数的概念 306

二、收敛级数的基本性质 309

习题一 312

第二节 常数项级数的审敛法 313

一、正项级数及其审敛性 313

二、交错级数及其审敛法 321

三、绝对收敛与条件收敛 322

习题二 323

第三节 幂级数 325

一、函数项级数的概念 325

二、幂级数及其收敛域 326

三、幂级数的运算 329

习题三 332

第四节 泰勒公式与泰勒级数 332

一、泰勒公式 332

二、泰勒级数 335

三、函数展开成幂级数 337

习题四 341

总习题十 341

附录一 初等数学中的一些计算公式 345

附录二 基本初等函数的图形及主要性质 347

习题参考答案 349