《光电集成电路设计与器件建模 英文版》PDF下载

  • 购买积分:11 如何计算积分?
  • 作  者:Jianjun Gao
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2011
  • ISBN:9787040313260
  • 页数:292 页
图书介绍:本书是作者在微波和光通信领域技术领域多年工作、学习、研究和教学过程中获得的知识和经验的总结,主要内容包括高速光电子器件的工作机理、建模技术和参数提取技术,光接收机和发射机集成电路设计技术,光电子器件小信号等效电路模型、大信号非线性等效电路模型和噪声等效电路模型,以及等效电路模型的参数提取技术等。本书可作为光电子专业、微波专业和电路与系统专业的高年级本科生和研究生教学参考书,也可以供从事集成电路设计的科研人员参考使用。

1 Introduction 1

1.1 Optical Communication System 1

1.2 Optoelectronic Integrated Circuit Computer-Aided Design 5

1.3 Organization of This Book 7

References 8

2 Basic Concept of Semiconductor Laser Diodes 9

2.1 Introduction 9

2.2 Basic Concept 10

2.2.1 Atom Energy 11

2.2.2 Emission and Absorption 12

2.2.3 Population Inversion 14

2.3 Structures and Types 15

2.3.1 Homojunction and Heterojunction 15

2.3.2 Index Guiding and Gain Guiding 18

2.3.3 Fabry-Perot Cavity Lasers 20

2.3.4 Quantum-Well Lasers 22

2.3.5 Distributed Feedback Lasers 27

2.3.6 Vertical-Cavity Surface-Emitting Lasers 33

2.4 Laser Characteristics 34

2.4.1 Single-Mode Rate Equations 35

2.4.2 Multimode Rate Equations 38

2.4.3 Small-Signal Intensity Modulation 40

2.4.4 Small-Signal Frequency Modulation 44

2.4.5 Large-Signal Transit Response 46

2.4.6 Second Harmonic Distortion 48

2.4.7 Relative Intensity Noise 51

2.4.8 Measurement Technique 55

2.5 Summary 58

References 58

3 Modeling and Parameter Extraction Techniques of Lasers 63

3.1 Introduction 63

3.2 Standard Double Heterojunction Semiconductor Lasers 64

3.2.1 Large-Signal Model 65

3.2.2 Small-Signal Model 68

3.2.3 Noise Model 72

3.3 Quantum-Well Lasers 76

3.3.1 One-Level Equivalent Circuit Model 76

3.3.2 Two-Level Equivalent Circuit Model 83

3.3.3 Three-Level Equivalent Circuit Model 90

3.4 Parameter Extraction Methods 95

3.4.1 Direct-Extraction Method 95

3.4.2 Semi-Analytical Method 105

3.5 Summary 111

References 111

4 Microwave Modeling Techniques of Photodiodes 113

4.1 Introduction 113

4.2 Physical Principles 114

4.3 Figures of Merit 116

4.3.1 Responsivity 117

4.3.2 Quantum Efficiency 118

4.3.3 Absorption Coefficient 119

4.3.4 Dark Current 119

4.3.5 Rise Time and Bandwidth 121

4.3.6 Noise Currents 122

4.4 Microwave Modeling Techniques 122

4.4.1 PIN PD 124

4.4.2 APD 129

4.5 Summary 145

References 145

5 High-Speed Electronic Semiconductor Devices 149

5.1 Overview of Microwave Transistors 149

5.2 FET Modeling Technique 151

5.2.1 FET Small-Signal Modeling 152

5.2.2 FET Large-Signal Modeling 155

5.2.3 FET Noise Modeling 161

5.3 GaAs/InP HBT Modeling Technique 165

5.3.1 GaAs/InP HBT Nonlinear Model 166

5.3.2 GaAs/InP HBT Linear Model 168

5.3.3 GaAs/InP HBT Noise Model 170

5.3.4 Parameter Extraction Methods 171

5.4 SiGe HBT Modeling Technique 175

5.5 MOSFET Modeling Technique 176

5.5.1 MOSFET Small-Signal Model 177

5.5.2 MOSFET Noise Model 181

5.5.3 Parameter Extraction Methods 181

5.6 Summary 183

References 183

6 Semiconductor Laser and Modulator Driver Circuit Design 187

6.1 Basic Concepts 187

6.1.1 NRZ and RZ Data 188

6.1.2 Optical Modulation 190

6.1.3 Optical External Modulator 191

6.2 Optoelectronic Integration Technology 194

6.2.1 Monolithic Optoelectronic Integrated Circuits 195

6.2.2 Hybrid Optoelectronic Integrated Circuits 197

6.3 Laser Driver Circuit Design 199

6.4 Modulator Driver Circuit Design 205

6.4.1 FET-Based Driver Circuit 207

6.4.2 Bipolar Transistor-Based Driver Integrated Circuit 215

6.4.3 MOSFET-Based Driver Integrated Circuit 221

6.5 Distributed Driver Circuit Design 222

6.6 Passive Peaking Techniques 224

6.6.1 Capacitive Peaking Techniques 225

6.6.2 Inductive Peaking Techniques 226

6.7 Summary 229

References 229

7 Optical Receiver Front-End Integrated Circuit Design 233

7.1 Basic Concepts of the Optical Receiver 234

7.1.1 Signal-to-Noise Ratio 234

7.1.2 Bit Error Ratio 235

7.1.3 Sensitivity 237

7.1.4 Eye Diagram 238

7.1.5 Signal Bandwidth 240

7.1.6 Dynamic Range 241

7.2 Front-End Circuit Design 243

7.2.1 Hybrid and Monolithic OEIC 244

7.2.2 High-Impedance Front-End 245

7.2.3 Transimpedance Front-End 247

7.3 Transimpedance Gain and Equivalent Input Noise Current 250

7.3.1 S Parameters of a Two-Port Network 251

7.3.2 Noise Figure of a Two-Port Network 252

7.3.3 Transimpedance Gain 253

7.3.4 Equivalent Input Noise Current 255

7.3.5 Simulation and Measurement of Transimpedance Gain and Equivalent Input Noise Current 257

7.4 Transimpedance Amplifier Circuit Design 262

7.4.1 BJT-Based Circuit Design 262

7.4.2 HBT-Based Circuit Design 263

7.4.3 FET-Based Circuit Design 268

7.4.4 MOSFET-Based Circuit Design 270

7.4.5 Distributed Circuit Design 271

7.5 Passive Peaking Techniques 274

7.5.1 Inductive Peaking Techniques 274

7.5.2 Capacitive Peaking Techniques 277

7.6 Matching Techniques 279

7.7 Summary 284

References 284

Index 289