《CMOS超大规模集成电路设计 英文版》PDF下载

  • 购买积分:21 如何计算积分?
  • 作  者:(美)韦斯特,(美)哈里斯著
  • 出 版 社:北京:电子工业出版社
  • 出版年份:2011
  • ISBN:9787121141447
  • 页数:751 页
图书介绍:本书是本经典教材,作者具有丰富的业界实践经验与教学经验。该版本反映了近年来集成电路设计领域面貌的迅速变化,突出了延时、功耗、互连和鲁棒性等关键因素的影响。内容涵盖了从系统级到电路级的CMOS VLSI设计方法,介绍了CMOS集成电路的基本原理,设计的基本问题,基本电路和子系统的设计,以及CMOS系统的设计实例(包括一系列当前设计方法和CMOS的特有问题,以及测试、可测性设计和调试等技术)。全书加强了对业界积累的许多宝贵设计经验的介绍。

Chapter 1 Welcome to VLSI 1

1.1 A Brief History 1

1.2 Preview 6

1.3 MOS Transistors 6

1.4 CMOS Logic 9

1.4.1 The Inverter 9

1.4.2 The NAND Gate 9

1.4.3 CMOS Logic Gates 9

1.4.4 The NOR Gate 11

1.4.5 Compound Gates 11

1.4.6 Pass Transistors and Transmission Gates 12

1.4.7 Tristates 14

1.4.8 Multiplexers 15

1.4.9 Sequential Circuits 16

1.5 CMOS Fabrication and Layout 19

1.5.1 Inverter Cross-Section 19

1.5.2 Fabrication Process 20

1.5.3 Layout Design Rules 24

1.5.4 Gate Layouts 27

1.5.5 Stick Diagrams 28

1.6 Design Partitioning 29

1.6.1 Design Abstractions 30

1.6.2 Structured Design 31

1.6.3 Behavioral,Structural,and Physical Domains 31

1.7 Example:A Sinple MIPS Microprocessor 33

1.7.1 MIPS Architecture 33

1.7.2 Multicycle MIPS Microarchitecture 34

1.8 Logic Design 38

1.8.1 Top-Level Interfaces 38

1.8.2 Block Diagrams 38

1.8.3 Hierarchy 40

1.8.4 Hardware Description Languages 40

1.9 Circuit Design 42

1.10 Physical Design 45

1.10.1 Floorplanning 45

1.10.2 Standard Cells 48

1.10.3 Pitch Matching 50

1.10.4 Slice Plans 50

1.10.5 Arrays 51

1.10.6 Area Estimation 51

1.11 Design Veri.cation 53

1.12 Fabrication,Packaging,and Testing 54

Summary and a Look Ahead 55

Exercises 57

Chapter 2 Devices 61

2.1 Introduction 61

2.2 Long-Channel I-V Characteristics 64

2.3 C-V Characteristics 68

2.3.1 Simple MOS Capacitance Models 68

2.3.2 Detailed MOS Gate Capacitance Model 70

2.3.3 Detailed MOS Diffusion Capacitance Model 72

2.4 Nonideal I-V Effects 74

2.4.1 Mobility Degradation and Velocity Saturation 75

2.4.2 Channel Length Modulation 78

2.4.3 Threshold Voltage Effects 79

2.4.4 Leakage 80

2.4.5 Temperature Dependence 85

2.4.6 Geometry Dependence 86

2.4.7 Summary 86

2.5 DC Transfer Characteristics 87

2.5.1 Static CMOS Inverter DC Characteristics 88

2.5.2 Beta Ratio Effects 90

2.5.3 Noise Margin 91

2.5.4 Pass Transistor DC Characteristics 92

2.6 Pitfalls and Fallacies 93

Summary 94

Exercises 95

Chapter 3 Speed 99

3.1 Introduction 99

3.1.1 De.nitions 99

3.1.2 Timing Optimization 100

3.2 Transient Response 101

3.3 RC Delay Model 104

3.3.1 Effective Resistance 104

3.3.2 Gate and Diffusion Capacitance 105

3.3.3 Equivalent RC Circuits 105

3.3.4 Transient Response 106

3.3.5 Elmore Delay 108

3.3.6 Layout Dependence of Capacitance 111

3.3.7 Determining Effective Resistance 112

3.4 Linear Delay Model 113

3.4.1 Logical Effort 114

3.4.2 Parasitic Delay 114

3.4.3 Delay in a Logic Gate 116

3.4.4 Drive 117

3.4.5 Extracting Logical Effort from Datasheets 117

3.4.6 Limitations to the Linear Delay Model 118

3.5 Logical Effort of Paths 121

3.5.1 Delay in Multistage Logic Networks 121

3.5.2 Choosing the Best Number of Stages 124

3.5.3 Example 126

3.5.4 Summary and Observations 127

3.5.5 Limitations of Logical Effort 129

3.5.6 Iterative Solutions for Sizing 129

3.6 Timing Analysis Delay Models 131

3.6.1 Slope-Based Linear Model 131

3.6.2 Nonlinear Delay Model 132

3.6.3 Current Source Model 132

3.7 Pitfalls and Fallacies 132

3.8 Historical Perspectives 133

Summary 134

Exercises 134

Chapter 4 Power 139

4.1 Introduction 139

4.1.1 De.nitions 140

4.1.2 Examples 140

4.1.3 Sources of Power Dissipation 142

4.2 Dynamic Power 143

4.2.1 Activity Factor 144

4.2.2 Capacitance 146

4.2.3 Voltage 148

4.2.4 Frequency 150

4.2.5 Short-Circuit Current 151

4.2.6 Resonant Circuits 151

4.3 Static Power 152

4.3.1 Static Power Sources 152

4.3.2 Power Gating 155

4.3.3 Multiple Threshold Voltages and Oxide Thicknesses 157

4.3.4 Variable Threshold Voltages 157

4.3.5 Input Vector Control 158

4.4 Energy-Delay Optimization 158

4.4.1 Minimum Energy 158

4.4.2 Minimum Energy-Delay Product 161

4.4.3 Minimum Energy Under a Delay Constraint 161

4.5 Low Power Architectures 162

4.5.1 Microarchitecture 162

4.5.2 Parallelism and Pipelining 162

4.5.3 Power Management Modes 163

4.6 Pitfalls and Fallacies 164

4.7 Historical Perspective 165

Summary 167

Exercises 167

Chapter 5 Wires 169

5.1 Introduction 169

5.1.1 Wire Geometry 169

5.1.2 Example:Intel Metal Stacks 170

5.2 Interconnect Modeling 171

5.2.1 Resistance 172

5.2.2 Capacitance 173

5.2.3 Inductance 176

5.2.4 Skin Effect 177

5.2.5 Temperature Dependence 178

5.3 Interconnect Impact 178

5.3.1 Delay 178

5.3.2 Energy 180

5.3.3 Crosstalk 180

5.3.4 Inductive Effects 182

5.3.5 An Aside on Effective Resistance and Elmore Delay 185

5.4 Interconnect Engineering 187

5.4.1 Width,Spacing,and Layer 187

5.4.2 Repeaters 188

5.4.3 Crosstalk Control 190

5.4.4 Low-Swing Signaling 192

5.4.5 Regenerators 194

5.5 Logical Effort with Wires 194

5.6 Pitfalls and Fallacies 195

Summary 196

Exercises 196

Chapter 6 Scaling,Reliability,and Variability 199

6.1 Introduction 199

6.2 Variability 199

6.2.1 Supply Voltage 200

6.2.2 Temperature 200

6.2.3 Process Variation 201

6.2.4 Design Corners 202

6.3 Reliability 204

6.3.1 Reliability Terminology 204

6.3.2 Oxide Wearout 205

6.3.3 Interconnect Wearout 207

6.3.4 Soft Errors 209

6.3.5 Overvoltage Failure 210

6.3.6 Latchup 211

6.4 Scaling 212

6.4.1 Transistor Scaling 213

6.4.2 Interconnect Scaling 215

6.4.3 International Technology Roadmap for Semiconductors 216

6.4.4 Impacts on Design 217

6.5 Statistical Analysis of Variability 221

6.5.1 Properties of Random Variables 221

6.5.2 Variation Sources 224

6.5.3 Variation Impacts 227

6.6 Variation-Tolerant Design 232

6.6.1 Adaptive Control 233

6.6.2 Fault Tolerance 233

6.7 Pitfalls and Fallacies 235

6.8 Historical Perspective 236

Summary 242

Exercises 242

Chapter 7 SPICE 245

7.1 Introduction 245

7.2 A SPICE Tutorial 246

7.2.1 Sources and Passive Components 246

7.2.2 Transistor DC Analysis 250

7.2.3 Inverter Transient Analysis 250

7.2.4 Subcircuits and Measurement 252

7.2.5 Optimization 254

7.2.6 Other HSPICE Commands 256

7.3 Device Models 256

7.3.1 Level 1 Models 257

7.3.2 Level 2 and 3 Models 258

7.3.3 BSIM Models 258

7.3.4 Diffusion Capacitance Models 258

7.3.5 Design Comers 260

7.4 Device Characterization 261

7.4.1 I-V Characteristics 261

7.4.2 Threshold Voltage 264

7.4.3 Gate Capacitance 266

7.4.4 Parasitic Capacitance 266

7.4.5 Effective Resistance 268

7.4.6 Comparison of Processes 269

7.4.7 Process and Environmental Sensitivity 271

7.5 Circuit Characterization 271

7.5.1 Path Simulations 271

7.5.2 DC Transfer Characteristics 273

7.5.3 Logical Effort 273

7.5.4 Power and Energy 276

7.5.5 Simulating Mismatches 277

7.5.6 Monte Carlo Simulation 277

7.6 Interconnect Simulation 277

7.7 Pitfalls and Fallacies 280

Summary 282

Exercises 282

Chapter 8 Gates 285

8.1 Introduction 285

8.2 Circuit Families 286

8.2.1 Static CMOS 287

8.2.2 Ratioed Circuits 292

8.2.3 Cascode Voltage Switch Logic 297

8.2.4 Dynamic Circuits 297

8.2.5 Pass-Transistor Circuits 307

8.3 Circuit Pitfalls 312

8.3.1 Threshold Drops 313

8.3.2 Ratio Failures 313

8.3.3 Leak age 314

8.3.4 Charge Sharing 314

8.3.5 Power Supply Noise 314

8.3.6 Hot Spots 315

8.3.7 Minority Carrier Injection 315

8.3.8 Back-Gate Coupling 316

8.3.9 Diffusion Input Noise Sensitivity 316

8.3.10 Process Sensitivity 316

8.3.11 Example:Domino Noise Budgets 317

8.4 Silicon-On-Insulator Circuit Design 318

8.4.1 Floating Body Voltage 319

8.4.2 SOI Advantages 320

8.4.3 SOI Disadvantages 320

8.4.4 Implications for Circuit Styles 321

8.4.5 Summary 322

8.5 Subthreshold Circuit Design 322

8.5.1 Sizing 323

8.5.2 Gate Selection 323

8.6 Pitfalls and Fallacies 324

8.7 Historical Perspective 325

Summary 327

Exercises 328

Chapter 9 Sequencing 333

9.1 Introduction 333

9.2 Sequencing Static Circuits 334

9.2.1 Sequencing Methods 334

9.2.2 Max-Delay Constraints 337

9.2.3 Min-Delay Constraints 341

9.2.4 Time Borrowing 344

9.2.5 Clock Skew 347

9.3 Circuit Design of Latches and Flip-Flops 349

9.3.1 Conventional CMOS Latches 350

9.3.2 Conventional CMOS Flip-Flops 351

9.3.3 Pulsed Latches 353

9.3.4 Resettable Latches and Flip-Flops 354

9.3.5 Enabled Latches and Flip-Flops 355

9.3.6 Incorporating Logic into Latches 356

9.3.7 Klass Semidynamic Flip-Flop(SDFF) 357

9.3.8 Differential Flip-Flops 357

9.3.9 Dual Edge-Triggered Flip-Flops 358

9.3.10 Radiation-Hardened Flip-Flops 359

9.4 Static Sequencing Element Methodology 360

9.4.1 Choice of Elements 361

9.4.2 Characterizing Sequencing Element Delays 363

9.4.3 State Retention Registers 366

9.4.4 Level-Converter Flip-Flops 366

9.4.5 Design Margin and Adaptive Sequential Elements 367

9.5 Synchronizers 369

9.5.1 Metastability 370

9.5.2 A Simple Synchronizer 373

9.5.3 Communicating Between Asynchronous Clock Domains 374

9.5.4 Common Synchronizer Mistakes 375

9.5.5 Arbiters 377

9.5.6 Degrees of Synchrony 377

9.6 Wave Pipelining 378

9.7 Pitfalls and Fallacies 380

Summary 381

Exercises 383

Chapter 10 Datapaths 387

10.1 Introduction 387

10.2 Addition/Subtraction 387

10.2.1 Single-Bit Addition 388

10.2.2 Carry-Propagate Addition 392

10.2.3 Subtraction 416

10.2.4 Multiple-Input Addition 416

10.2.5 Flagged Prefix Adders 417

10.3 One/Zero Detectors 419

10.4 Comparators 420

10.4.1 Magnitude Comparator 420

10.4.2 Equality Comparator 420

10.4.3 K=A+B Comparator 421

10.5 Counters 421

10.5.1 Binary Counters 422

10.5.2 Fast Binary Counters 423

10.5.3 Ring and Johnson Counters 424

10.5.4 Linear-Feedback Shift Registers 424

10.6 Boolean Logical Operations 426

10.7 Coding 426

10.7.1 Parity 426

10.7.2 Error-Correcting Codes 426

10.7.3 Gray Codes 428

10.7.4 XOR/XNOR Circuit Forms 429

10.8 Shifters 430

10.8.1 Funnel S hifter 431

10.8.2 Barrel Shifter 433

10.8.3 Alternative Shift Functions 434

10.9 Multiplication 434

10.9.1 Unsigned Array Multiplication 436

10.9.2 Two's Complement Array Multiplication 437

10.9.3 Booth Encoding 438

10.9.4 Column Addition 443

10.9.5 Final Addition 447

10.9.6 Fused Multiply-Add 448

10.9.7 Summary 448

10.10 Parallel-Prefix Computations 449

10.11 Pitfalls and Fallacies 451

Summary 452

Exercises 452

Chapter 11 Memories 455

11.1 Introduction 455

11.2 SRAM 456

11.2.1 SRAM Cells 457

11.2.2 Row Circuitry 464

11.2.3 Column Circuitry 468

11.2.4 Multi-Ported SRAM and Register Files 472

11.2.5 Large SRAMs 473

11.2.6 Low-Power SRAMs 475

11.2.7 Area,Delay,and Power of RAMs and Register Files 478

11.3 DRAM 480

11.3.1 Subarray Architectures 481

11.3.2 Column Circuitry 483

11.3.3 Embedded DRAM 484

11.4 Read-Only Memory 485

11.4.1 Programmable ROMs 487

11.4.2 NAND ROMs 488

11.4.3 Flash 489

11.5 Serial Access Memories 491

11.5.1 Shift Registers 491

11.5.2 Queues(FIFO,LIFO) 491

11.6 Content-Addressable Memory 493

11.7 Programmable Logic Arrays 495

11.8 Robust Memory Design 499

11.8.1 Redundancy 499

11.8.2 Error Correcting Codes(ECC) 501

11.8.3 Radiation Hardening 501

11.9 Historical Perspective 501

Summary 503

Exercises 504

Chapter 12 Packaging,Power,Clock,I/O 507

12.1 Introduction 507

12.2 Packaging and Cooling 507

12.2.1 Package Options 507

12.2.2 Chip-to-Package Connections 509

12.2.3 Package Parasitics 510

12.2.4 Heat Dissipation 510

12.2.5 Temperature Sensors 511

12.3 Power Distribution 513

12.3.1 On-Chip Power Distribution Network 514

12.3.2 IR Drops 515

12.3.3 L di/dt Noise 516

12.3.4 On-Chip Bypass Capacitance 517

12.3.5 Power Network Modeling 518

12.3.6 Power Supply Filtering 522

12.3.7 Charge Pumps 522

12.3.8 Substrate Noise 523

12.3.9 Energy Scavenging 523

12.4 Clocks 524

12.4.1 De.nitions 524

12.4.2 Clock System Architecture 526

12.4.3 Global Clock Generation 527

12.4.4 Global Clock Distribution 529

12.4.5 Local Clock Gaters 533

12.4.6 Clock Skew Budgets 535

12.4.7 Adaptive Deskewing 537

12.5 PLLs and DLLs 538

12.5.1 PLLs 538

12.5.2 DLLs 545

12.5.3 Pitfalls 547

12.6 I/O 548

12.6.1 Basic I/O Pad Circuits 549

12.6.2 Electrostatic Discharge Protection 551

12.6.3 Example:MOSIS I/O Pads 552

12.6.4 Mixed-Voltage I/O 554

12.7 High-Speed Links 555

12.7.1 High-Speed I/O Channels 555

12.7.2 Channel Noise and Interference 558

12.7.3 High-Speed Transmitters and Receivers 559

12.7.4 Synchronous Data Transmission 564

12.7.5 Clock Recovery in Source-Synchronous Systems 564

12.7.6 Clock Recovery in Mesochronous Systems 566

12.7.7 Clock Recovery in Pleisochronous Systems 568

12.8 Random Circuits 568

12.8.1 True Random Number Generators 568

12.8.2 Chip Identification 569

12.9 Pitfalls and Fallacies 570

Summary 571

Exercises 572

Chapter 13 Methodology 573

13.1 Introduction 573

13.2 Structured Design Strategies 575

13.2.1 A Software Radio—A System Example 576

13.2.2 Hierarchy 578

13.2.3 Regularity 581

13.2.4 Modularity 583

13.2.5 Locality 584

13.2.6 Summary 585

13.3 Design Methods 585

13.3.1 Microprocessor/DSP 585

13.3.2 Programmable Logic 586

13.3.3 Gate Arrayand Sea of Gates Design 589

13.3.4 Cell-Based Design 590

13.3.5 Full Custom Design 592

13.3.6 Platform-Based Design—System on a ChiP 593

13.3.7 Summary 594

13.4 Design Flows 594

13.4.1 Behavioral Synthesis Design Flow(ASIC Design Flow) 595

13.4.2 Automated Layout Generation 599

13.4.3 Mixed-Signal or Custom-Design Flow 603

13.5 Design Economics 604

13.5.1 Non-Recurring Engineering Costs(NREs) 605

13.5.2 Recurring Costs 607

13.5.3 Fixed Costs 608

13.5.4 Schedule 609

13.5.5 Personpower 611

13.5.6 Project Management 611

13.5.7 Design Reuse 612

13.6 Data Sheets and Documentation 613

13.6.1 The Summary 613

13.6.2 Pinout 613

13.6.3 Description of Operation 613

13.6.4 DC Specifications 613

13.6.5 AC Specifications 614

13.6.6 Package Diagram 614

13.6.7 Principles of Operation Manual 614

13.6.8 User Manual 614

13.7 Pitfalls and Fallacies 615

Exercises 615

Chapter 14 Test 617

14.1 Introduction 617

14.1.1 Logic Veri.cation 618

14.1.2 Debugging 620

14.1.3 Manufacturing Tests 622

14.2 Testers,Test Fixtures,and Test Programs 624

14.2.1 Testers and Test Fixtures 624

14.2.2 Test Programs 626

14.2.3 Handlers 627

14.3 Logic Verification Principles 628

14.3.1 Test Vectors 628

14.3.2 Testbenches and Harnesses 629

14.3.3 Regression Testing 629

14.3.4 Version Control 630

14.3.5 Bug Tracking 631

14.4 Silicon Debug Principles 631

14.5 Manufacturing Test Principles 634

14.5.1 Fault Models 635

14.5.2 Observability 637

14.5.3 Controllability 637

14.5.4 Repeatability 637

14.5.5 Survivability 637

14.5.6 Fault Coverage 638

14.5.7 Automatic Test Pattern Generation(ATPG) 638

14.5.8 Delay Fault Testing 638

14.6 Design for Testability 639

14.6.1 Ad Hoc Testing 639

14.6.2 Scan Design 640

14.6.3 Built-In Self-Test(BIST) 642

14.6.4 IDDQ Testing 645

14.6.5 Design for Manufacturability 645

14.7 Boundary Scan 646

14.8 Testing in a University Environment 647

14.9 Pitfalls and Fallacies 648

Summary 655

Exercises 655

Chapter 15 Fabrication 657

15.1 Introduction 657

15.2 CMOS Technologies 658

15.2.1 Wafer Formation 658

15.2.2 Photolimography 659

15.2.3 Well and Channel Formation 661

15.2.4 Silicon Dioxide(SiO2) 663

15.2.5 Isolation 664

15.2.6 Gate Oxide 665

15.2.7 Gate and Source/Drain Formations 666

15.2.8 Contacts and Metallization 668

15.2.9 Passivation 670

15.2.10 Metrology 670

15.3 Layout Design Rules 671

15.3.1 Design Rule Background 671

15.3.2 Scribe Line and Other Stnctures 674

15.3.3 MOSIS Scalable CMOS Design Rules 675

15.3.4 Micron Design Rules 676

15.4 CMOS Process Enhancements 677

15.4.1 Transistors 677

15.4.2 Interconnect 680

15.4.3 Circuit Elements 682

15.4.4 Beyond Conventional CMOS 687

15.5 Technology-Related CAD Issues 688

15.5.1 Design Rule Checking(DRC) 689

15.5.2 Circuit Extraction 690

15.6 Manufacturing Issues 691

15.6.1 Antenna Rules 691

15.6.2 LayerDensitv Rules 692

15.6.3 Resolution Enhancement Rules 692

15.6.4 Metal Slotting Rules 693

15.6.5 Yield Enhancement Guidelines 693

15.7 Pitfalls and Fallacies 694

15.8 Historical Perspective 695

Summary 697

Exercises 697

References 699

Index 731

Credits 751