第1章 导论 1
1.1 人工智能的定义与基础 1
1.1.1 何谓人工智能? 1
1.1.2 AI基础简史 3
1.1.3 AI与唯理主义和经验主义传统 5
1.1.4 形式逻辑的发展 6
1.1.5 图灵测试 8
1.1.6 智能的生物与社会模型:agent理论 10
1.2 AI应用领域概述 12
1.2.1 博弈 12
1.2.2 自动推理与定理证明 13
1.2.3 专家系统 13
1.2.4 自然语言理解 15
1.2.5 模拟人的性能 15
1.2.6 规划与机器人 15
1.2.7 AI语言和环境 16
1.2.8 机器学习 16
1.2.9 神经网络与遗传算法 17
1.2.10 AI与哲学 18
1.3 人工智能概要 18
练习 19
第2章 表示与搜索导引 20
2.1 表示系统 21
2.2 搜索 22
第3章 谓词演算 26
3.1 命题演算 26
3.1.1 语法 26
3.1.2 语义 27
3.2 谓词演算 28
3.2.1 语法 28
3.2.2 语义 29
3.3 谓词演算的推断规则 32
3.3.1 推断规则 32
3.3.2 一致化 33
3.4 应用:基于逻辑的家庭财务咨询系统 36
练习 38
第4章 状态空间搜索 40
4.1 状态空间搜索的结构 41
4.1.1 图论 41
4.1.2 有限状态机 42
4.1.3 问题的状态空间表示 44
4.2 状态空间搜索策略 47
4.2.1 数据驱动和目标驱动的搜索 47
4.2.2 广度优先和深度优先搜索 48
4.2.3 逐步加深的深度优先搜索 52
4.3 与/或图和逻辑推理 53
4.4 应用:家庭财务咨询系统 54
练习 56
第5章 启发式搜索 57
5.1 爬山法和动态规划 59
5.1.1 爬山法 59
5.1.2 动态规划 60
5.2 最好优先搜索算法 62
5.2.1 实现最好优先搜索 62
5.2.2 实现启发估价函数 64
5.2.3 启发式搜索与专家系统 66
5.3 可采纳性、单调性及信息度 67
5.3.1 可采纳性 67
5.3.2 单调性 68
5.3.3 A*算法的比较 69
5.4 搜索博弈图 69
5.4.1 极小极大程序 69
5.4.2 固定深度的minimax 71
5.4.3 α-β剪枝 74
5.5 计算复杂度问题 75
练习 77
第6章 状态空间搜索的控制算法 78
6.1 基于递归的搜索 78
6.1.1 递归搜索 78
6.1.2 递归搜索示例:模式驱动的推理 80
6.2 产生式系统 82
6.2.1 定义及简史 82
6.2.2 产生式系统示例 84
6.2.3 搜索的控制 86
6.2.4 产生式系统的优点 89
6.3 问题求解的黑板体系 90
练习 91
第7章 知识表示 93
7.1 AI表示研究简史 93
7.1.1 含义的联想主义理论 93
7.1.2 语义网络的早期工作 96
7.1.3 网络关系的标准化 97
7.1.4 脚本 101
7.1.5 框架 103
7.2 概念图 105
7.2.1 概念图导引 105
7.2.2 类型、个体和名称 106
7.2.3 类型的层次结构 107
7.2.4 概念图的操作 107
7.2.5 命题节点 109
7.2.6 概念图与逻辑 110
‘7.3 替代显式表示 110
7.3.1 Brooks的包容体系 111
7.3.2 多种表示、本体论与知识服务 112
7.4 基于agent的分布式问题求解 113
7.4.1 面向agent的问题求解:一种定义 113
7.4.2 agent范型的示例及其存在问题 115
练习 116
第8章 知识系统 117
8.1 专家系统技术概述 118
8.1.1 设计基于规则的专家系统 118
8.1.2 问题领域的选择与知识工程过程 119
8.1.3 概念模型及其在知识获取中的作用 121
8.2基于规则的专家系统 122
8.2.1 产生式系统与目标驱动的问题求解 122
8.2.2 目标驱动的推理的解释与透明性 124
8.2.3 产生式系统与数据驱动的推理 125
8.2.4 专家系统的启发性与控制 127
8.3 基于模型、基于事例和混合系统 128
8.3.1 基于模型的推理导引 128
8.3.2 基于模型的推理:NASA的例子 130
8.3.3 基于事例的推理导引 132
8.3.4 混合设计 134
8.4 规划 137
8.4.1 STRIPS 139
8.4.2 目的一反应式规划 142
8.4.3 规划:NASA的例子 143
练习 145
第9章 不确定推理 146
9.1 基于逻辑的反绎推理 147
9.1.1 非单调推理逻辑 147
9.1.2 真值维护系统 149
9.1.3 基于最小模型的逻辑 153
9.1.4 集合覆盖与基于逻辑的反绎 154
9.2 反绎:替代逻辑 156
9.2.1 肯定因数代数 156
9.2.2 模糊推理 158
9.2.3 Dempster和Sharer的证据论 160
9.3 不确定性的随机途径 164
9.3.1 有向图模型:贝叶斯信念网络 164
9.3.2 有向图模型:d-分隔 165
9.3.3 有向图模型:推理算法 166
9.3.4 有向图模型:动态贝叶斯网络 168
9.3.5 Markov模型:离散Markov过程 169
9.3.6 Markov模型:改型 171
练习 171
第10章 基于符号的机器学习 173
10.1 基于符号的学习框架 174
10.2 版本空间搜索 178
10.2.1 一般化操作与概念空间 178
10.2.2 候选排除算法 179
10.2.3 LEX:归纳搜索启发式 182
10.2.4 候选排除算法的评价 185
10.3 ID3决策树归纳算法 185
10.3.1 自顶向下归纳决策树 187
10.3.2 信息论的测试选择 188
10.3.3 评价ID3 190
10.3.4 决策树的数据问题 190
10.4 归纳偏向与学习能力 191
10.4.1 归纳偏向 191
10.4.2 学习能力理论 192
10.5 知识与学习 193
10.5.1 基于解释的学习 194
10.5.2 类比推理 197
10.6 无监督的学习 199
10.6.1 发现与无监督的学习 199
10.6.2 概念聚类 200
10.6.3 COBWEB与分类知识的结构 201
10.7 增强式学习 205
10.7.1 增强式学习的成分 205
10.7.2 示例:井字棋博弈 206
10.7.3 增强式学习的推理算法 208
练习 209
第11章 神经网络 210
11.1 神经网络基础 211
11.2 感知器学习 212
11.2.1 感知器训练算法 212
11.2.2 感知器学习用于分类 213
11.2.3 梯度下降法与δ-规则 215
11.3 反向传播学习 217
11.3.1 反向传播算法 217
11.3.2 例1:NETtalk 218
11.3.3 例2:异或函数 219
11.4 竞争学习 220
11.4.1 分类的WTA学习算法 220
11.4.2 Kohonen的学习原型网络 221
11.4.3 重复传播网络 222
11.5 Hebb的叠合学习 224
11.5.1 无监督Hebb学习示例 225
11.5.2 有监督Hebb学习 226
11.5.3 结合存储与线性结合器 227
11.6 吸引状态网络 229
11.6.1 双向结合存储 230
11.6.2 BAM处理示例 231
11.6.3 自结合存储与Hopfield网络 233
练习 235
第12章 学习的遗传与浮现模型 236
12.1 遗传算法 237
12.1.1 遗传算法示例 238
12.1.2 遗传算法的评价 240
12.2 分类器系统与遗传程序设计 242
12.2.1 分类器系统 242
12.2.2 遗传程序设计 245
12.3 人工生命和基于社会的学习 249
12.3.1 “生命博弈” 249
12.3.2 进化规划 251
12.3.3 浮现的专题研究 252
练习 255
第13章 自动推理 256
13.1 通用问题求解器 256
13.2 归结定理证明器 260
13.2.1 谓词演算表达式化为短句集合 261
13.2.2 归结证明程序 263
13.2.3 归结策略和简化技术 265
13.2.4 由归结反驳抽取答案 268
13.3 PROLOG与自动推理 269
练习 273
第14章 自然语言理解 275
14.1 理解语言的符号途径 277
14.2 语法 279
14.2.1 上下文无关文法的规范与分析 279
14.3 跃迁网分析器与语义 280
14.3.1 跃迁网分析器 280
14.3.2 Chomsky层次与上下文有关文法 283
14.3.3 语义:ATN分析器 285
14.3.4 用ATN组合语法和语义知识 288
14.4 语言理解的随机工具 291
14.4.1 语法分析的概率途径 291
14.4.2 概率上下文无关分析器 292
14.5 自然语言的应用 293
14.5.1 故事理解与回答问题 293
14.5.2 数据库前端 294
14.5.3 对Web的信息抽取和摘要系统 296
练习 298
第15章 结束语:评述与展望 300
15.1 对AI几种途径的评述 301
15.1.1 智能与物理符号系统假设 301
15.1.2 连接主义计算 303
15.1.3 agent、浮现与智能 305
15.1.4 概率模型和随机技术 307
15.2 现代认知科学 308
15.2.1 心理学的约束 308
15.2.2 认识论问题 309
15.3 AI:当前的挑战与未来方向 314
附录A 随机方法导论 317
附录B 随机方法的应用 330
参考文献 345