图书介绍:本书第四章-第九章是本书的主体,讲述各种类型的回归方程,包括线性回归方程、拟线性回归方程、约束线性回归方程、非参数回归方程、半参数回归方程、函数系数回归方程(参数变量函数系数线性回归方程,参数变量函数系数半参数回归方程,回归变量函数系数线性回归方程,回归变量函数系数半参数回归方程)、随机过程回归方程(随机过程线性回归方程,Gauss--Markov线性回归方程,随机过程非参数回归方程)、逆回归方程(线性逆回归方程,线性逆回归方程组)以及随机向量密度函数(有文献已经指出,此问题可以化为回归方程的模式来解决),其中有不少为首倡第一章概率理论及附录B测度论,为统计回归分析理论的概率统计基础;第二章Hilbert空间、第三章泛函逼近论,是统计回归分析理论的泛函分析基础,其中相当部分的内容是专为统计回归分析理论而发展、补充的,包括推广Luzin定理;附录A矩阵代数,乃统计回归分析理论的不可或缺之工具;本书对大部分回归方程的求解结论,皆已作出模拟实验以资佐证,所用软件为SAS,附录C列出其中若干自编程序。书中有相当部分简单的或易于模仿的定理证明,着意留给读者完成之,以此权作习题。