《高等数学教材辅导及配套习题解析 第3版》PDF下载

  • 购买积分:18 如何计算积分?
  • 作  者:田勇主编;双博士数学课题组编写
  • 出 版 社:北京:科学技术文献出版社
  • 出版年份:2005
  • ISBN:7502332979
  • 页数:635 页
图书介绍:本书与同济教材完全配套,在章节安排上完全遵循同济六版的体例安排。

第一章 函数与极限 1

1.1映射与函数 1

1.2数列的极限 16

1.3函数的极限 19

1.4无穷小与无穷大 24

1.5极限运算法则 27

1.6极限存在准则两个重要极限 32

1.7无穷小的比较 38

1.8函数的连续性与间断点 41

1.9连续函数的运算与初等函数的连续性 48

1.10闭区间上连续函数的性质 53

本章知识网络图 57

总习题一部分习题选解 57

小结 59

历届考研真题评析 60

同步自测题 61

同步自测题参考答案 61

第二章 导数与微分 64

2.1导数的概念 64

2.2函数的求导法则 73

2.3高阶导数 81

2.4隐函数及由参数方程所确定的函数的导数相关变化率 84

2.5函数的微分 90

本章知识网络图 96

总习题二部分习题选解 96

小结 98

历届考研真题评析 99

同步自测题 100

同步自测题参考答案 101

3.1微分中值定理 103

第三章 微分中值定理与导数的应用 103

3.2洛必达法则 110

3.3泰勒公式 119

3.4函数的单调性与曲线的凹凸性 126

3.5函数的极值与最大值最小值 132

3.6 函数图形的描绘 138

3.7曲率 142

3.8方程的近似解 147

本章知识网络图 151

总习题三部分习题选解 151

小结 154

历届考研真题评析 155

同步自测题 156

同步自测题参考答案 157

第四章 不定积分 159

4.1不定积分的概念与性质 159

4.2换元积分法 164

4.3分部积分法 171

4.4有理函数的积分 177

4.5积分表的使用 190

本章知识网络图 191

总习题四部分习题选解 192

历届考研真题评析 196

小结 196

同步自测题 197

同步自测题参考答案 197

第五章 定积分 200

5.1定积分的概念与性质 200

5.2微积分基本公式 211

5.3定积分的换元法和分部积分法 219

5.4反常积分 230

5.5反常积分的审敛法Γ函数 237

总习题五部分习题选解 245

本章知识网络图 245

小结 249

历届考研真题评析 249

同步自测题 251

同步自测题参考答案 251

第六章 定积分的应用 254

6.1定积分的元素法 254

6.2定积分在几何学上的应用 255

6.3定积分在物理学上的应用 265

总习题六部分习题选解 268

本章知识网络图 268

小结 270

历届考研真题评析 270

同步自测题 271

同步自测题参考答案 272

第七章 空间解析几何与向量代数 274

7.1 向量及其线性运算 274

7.2数量积向量积 混合积 279

7.3曲面及其方程 287

7.4空间曲线及其方程 294

7.5平面及其方程 297

7.6空间直线及其方程 302

本章知识网络图 312

总习题七部分习题选解 312

小结 314

历届考研真题评析 315

同步自测题 316

同步自测题参考答案 316

第八章 多元函数微分法及其应用 317

8.1多元函数的基本概念 317

8.2偏导数 324

8.3全微分 327

8.4多元复合函数的求导法则 330

8.5隐函数的求导公式 335

8.6多元函数微分学的几何应用 339

8.7方向导数与梯度 343

8.8多元函数的极值及其求法 346

8.9二元函数的泰勒公式 351

8.10最小二乘法(略) 354

本章知识网络图 354

总习题八部分习题选解 354

小结 357

历届考研真题评析 358

同步自测题 359

同步自测题参考答案 359

第九章 重积分 361

9.1二重积分的概念与性质 361

9.2二重积分的计算方法 366

9.3三重积分 379

9.4重积分的应用 389

本章知识网络图 395

9.5含参变量的积分(略) 395

总习题九部分习题选解 396

小结 397

历届考研真题评析 398

同步自测题 399

同步自测题参考答案 399

第十章 曲线积分与曲面积分 402

10.1对弧长的曲线积分 402

10.2对坐标的曲线积分 412

10.3格林公式及其应用 421

10.4对面积的曲面积分 431

10.5对坐标的曲面积分 439

10.6高斯公式通量与散度 447

10.7斯托克斯公式环流量与旋度 454

本章知识网络图 461

总习题十部分习题选解 462

小结 469

历届考研真题评析 470

同步自测题 471

同步自测题参考答案 472

11.1常数项级数的概念和性质 475

第十一章 无穷级数 475

11.2常数项级数的审敛法 483

11.3幂级数 498

11.4函数展开成幂级数 508

11.5函数的幂级数展开式的应用(略) 515

11.6函数项级数的一致收敛性及一致收敛级数的基本性质 515

11.7傅里叶级数 523

11.8一般周期函数的傅里叶级数 534

本章知识网络图 539

总习题十一部分习题选解 540

小结 545

历届考研真题评析 546

同步自测题 548

同步自测题参考答案 548

第十二章 微分方程 551

12.1微分方程的基本概念 551

12.2可分离变量的微分方程 555

12.3齐次方程 560

12.4一阶线性微分方程 567

12.5全微分方程 576

12.6可降阶的高阶微分方程 585

12.7高阶线性微分方程 591

12.8常系数齐次线性微分方程 596

12.9常系数非齐次线性微分方程 601

12.10欧拉方程 608

12.11微分方程的幂级数解法(略) 612

12.12常系数线性微分方程组解法举例 612

本章知识网络图 625

总习题十二部分习题选解 625

小结 632

历届考研真题评析 632

同步自测题 634

同步自测题参考答案 634