第1章 绪论 1
1.1从一个例子来看经典统计与贝叶斯统计 3
1.1.1基于R语言的一个例子 4
1.1.2频率学派方法 5
1.1.3贝叶斯学派方法 5
1.2经典统计与贝叶斯统计的比较 7
1.2.1经典统计的缺陷 8
1.2.2对经典学派的批评 8
1.2.3对贝叶斯方法的批评 10
1.2.4贝叶斯统计存在的问题 10
1.3贝叶斯统计的兴起与发展 11
1.4贝叶斯统计的广泛应用 12
1.4.1促进了统计科学自身的发展 13
1.4.2在经济、金融和保险中的应用 13
1.4.3在生物、医学、生态学中的应用 14
1.4.4在可靠性中的应用 15
1.4.5在机器学习中的应用 15
1.4.6贝叶斯定理成为Google计算的新力量 16
1.5贝叶斯统计学的今天和明天 17
1.5.1客观贝叶斯分析 17
1.5.2主观贝叶斯分析 18
1.5.3稳健贝叶斯分析 18
1.5.4频率贝叶斯分析 18
1.5.5拟贝叶斯分析 19
1.6本书的框架和内容安排 19
1.7本章附录:应用贝叶斯方法搜寻失联航班 20
思考与练习题1 22
第2章 先验分布和后验分布 23
2.1统计推断的基础 23
2.2贝叶斯定理 24
2.2.1事件形式的贝叶斯定理 24
2.2.2随机变量形式的贝叶斯定理 27
2.3共轭先验分布 32
2.3.1共轭先验分布的定义 32
2.3.2后验分布的计算 32
2.3.3常用的共轭先验分布 41
2.4充分统计量 41
2.4.1经典统计中充分统计量的定义和判断 41
2.4.2贝叶斯统计中充分统计量的判断 42
2.5 Beta分布、Gamma分布和Pareto分布 44
2.5.1 Beta分布 44
2.5.2 Gamma分布 44
2.5.3 Pareto分布 45
2.6常用分布列表 47
思考与练习题2 49
第3章 贝叶斯统计推断 51
3.1点估计 51
3.1.1损失函数与风险函数 51
3.1.2贝叶斯估计的定义 53
3.1.3贝叶斯估计的误差 60
3.2区间估计 61
3.2.1可信区间的定义 61
3.2.2单侧可信限 62
3.3假设检验 73
3.3.1贝叶斯假设检验 73
3.3.2贝叶斯因子 75
3.3.3简单原假设H0对简单备择假设H1 76
3.3.4复杂原假设H0对复杂备择假设H1 77
3.3.5简单原假设H0对复杂备择假设H1 79
3.3.6多重假设检验 80
3.3.7用贝叶斯因子进行模型选择 80
3.4从p值到贝叶斯因子 82
3.4.1经典学派假设检验的回顾 82
3.4.2贝叶斯学派的假设检验 83
3.4.3两个学派检验方法的关系 84
3.5预测问题 85
3.6似然原理 88
3.7多参数模型的贝叶斯推断 90
3.7.1概述 90
3.7.2正态分布中参数的贝叶斯推断 90
3.7.3随机模拟方法 91
3.7.4应用案例 91
思考与练习题3 94
第4章 先验分布的选取 96
4.1先验信息与主观概率 96
4.2无信息先验分布 97
4.2.1贝叶斯假设 97
4.2.2共轭先验分布及超参数的确定 100
4.2.3位置参数的无信息先验分布 103
4.2.4尺度参数的无信息先验分布 104
4.2.5用Jeffreys准则确定无信息先验分布 105
4.3多层(分层)先验分布 108
4.4分层(多层)贝叶斯模型 112
4.4.1分层模型的建立及其贝叶斯推断 112
4.4.2 N-N模型与应用 113
4.4.3应用案例 116
思考与练习题4 120
第5章 统计决策基础 122
5.1统计决策问题 122
5.2统计决策问题的三要素 123
5.3期望损失、决策准则与风险 125
5.3.1贝叶斯期望损失 125
5.3.2决策准则与风险 126
5.4决策原理 128
5.4.1条件贝叶斯决策原理 128
5.4.2贝叶斯风险原理 129
5.5收益函数与决策准则 129
5.5.1收益函数 129
5.5.2收益函数下行动的容许性 130
5.5.3收益函数下的决策准则 131
5.6先验期望准则 134
5.6.1先验期望收益 135
5.6.2先验期望准则与其他几个准则的关系 136
5.7用损失函数与收益函数做决策的关系 139
5.7.1从收益到损失 140
5.7.2用收益函数表示损失函数 140
5.7.3损失函数下的悲观决策准则 141
5.7.4损失函数下的先验期望准则 142
5.8效用函数及其应用 144
5.8.1效用和效用函数 144
5.8.2用效用函数做决策的例子 147
思考与练习题5 149
第6章 贝叶斯决策 151
6.1贝叶斯决策问题 151
6.2后验风险准则 153
6.2.1后验风险 153
6.2.2决策函数 156
6.2.3后验风险准则 157
6.3常用损失函数下的贝叶斯估计 160
6.3.1平方损失函数下的贝叶斯估计 160
6.3.2线性损失函数下的贝叶斯估计 162
6.3.3有限个行动下的假设检验 163
思考与练习题6 165
第7章 贝叶斯回归分析 167
7.1经典方法中多元线性回归的回顾 167
7.1.1多元线性回归模型 167
7.1.2回归参数的估计 167
7.2模型中参数的贝叶斯估计 168
7.2.1回归系数的贝叶斯估计 169
7.2.2方差a2的贝叶斯估计 169
7.2.3应用案例 170
7.3随机模拟方法与应用案例 171
7.3.1随机模拟方法 171
7.3.2应用案例 172
思考与练习题7 175
第8章 贝叶斯统计在证券投资预测中的应用 178
8.1证券投资预测中的多层贝叶斯方法及其应用 178
8.1.1预测对象的状态划分 179
8.1.2状态概率的多层先验分布和多层贝叶斯估计 179
8.1.3预测方法 180
8.1.4应用案例 180
8.2证券投资预测中的E-Bayes方法及其应用 182
8.2.1预测对象的状态划分 182
8.2.2状态概率的E-Bayes估计的定义 182
8.2.3状态概率的E-Bayes估计 183
8.2.4预测案例 183
8.3证券投资预测的马氏链法和E-Bayes方法 185
8.3.1证券投资预测的马氏链法 185
8.3.2证券投资预测的E-Bayes法 185
8.3.3预测案例 186
8.4证券投资风险预测的E-Bayes法与灰色预测法 188
8.4.1 GM(1, 1)预测模型 188
8.4.2 E-Bayes预测法 189
8.4.3案例分析 189
思考与练习题8 191
第9章 贝叶斯判别模型与负点法在处理微量超差中的应用 193
9.1微量超差与负点法 193
9.2判别模型 194
9.2.1正态总体的距离判别模型 194
9.2.2贝叶斯判别模型 194
9.2.3对判别法则的评价 196
9.3负点法的建立 197
9.3.1直接划分超差带 197
9.3.2最大负点数的确定 197
9.4应用案例 198
9.4.1负点法(1)的判别结果 199
9.4.2贝叶斯判别模型的判别结果 201
9.4.3模型转化的负点法及其判别结果 204
思考与练习题9 206
第10章 贝叶斯统计在计量经济学和金融中的应用 207
10.1贝叶斯计量经济学概述 207
10.2贝叶斯统计与计量经济学 208
10.3贝叶斯计量经济学的基本思想、方法和内容 210
10.3.1贝叶斯模型比较和选择 210
10.3.2贝叶斯预测 211
10.3.3贝叶斯计量经济学中的计算 211
10.4公司信用风险研究的贝叶斯方法 211
10.5基于贝叶斯MCMC方法的VaR估计 212
10.5.1基于POT模型的VaR 213
10.5.2模型的贝叶斯MCMC估计 215
10.5.3应用案例 216
10.6基于MCMC的金融市场风险VaR的估计 218
10.6.1金融市场风险与VaR 218
10.6.2实证分析及评价 219
10.7本章结束语 223
10.8本章附录:从诺贝尔经济学奖看计量经济学的发展 224
10.8.1引言 224
10.8.2与计量经济学有关的诺贝尔经济学奖得主的工作介绍 225
10.8.3其他几位获奖者的工作简介 226
10.8.4结束语 227
思考与练习题10 227
第11章 贝叶斯统计在保险、精算中的应用 228
11.1经验费率的估计 228
11.2损失储备金与复合损失模型 229
11.3健康保险和生命表 230
11.4保险公司未决赔款准备金的稳健贝叶斯估计 230
11.5动态死亡率建模与年金产品长寿风险的度量 230
11.6贝叶斯方法估计极端损失再保险纯保费 232
11.7准备金发展年相关的贝叶斯估计 233
11.8贝叶斯方法在调整保险费率中的应用 233
11.9非寿险精算中的贝叶斯信用模型分析 234
11.10医疗保险参保人数的贝叶斯预测分析 236
11.10.1贝叶斯常均值折扣模型 236
11.10.2利用贝叶斯模型的预测 237
11.11贝叶斯方法及WinBUGS在非寿险费率分析中的应用 239
11.11.1引言 239
11.11.2贝叶斯视角下的广义线性模型 239
11.11.3损失频率模型 240
11.11.4损失强度模型 241
11.11.5通过R调用WinBUGS 242
11.11.6应用案例 242
11.11.7附录:模型代码(R, WinBUGS) 245
11.12贝叶斯方法在保险、精算中的应用展望 246
思考与练习题11 247
第12章 贝叶斯时间序列及其应用 248
12.1贝叶斯时间序列方法研究与应用评述 248
12.1.1贝叶斯时间序列方法与应用 249
12.1.2一元ARMA模型的贝叶斯方法 249
12.1.3多元AR模型的贝叶斯方法 250
12.1.4模型识别 250
12.2基于MCMC方法的贝叶斯AR(p)模型分析 250
12.2.1贝叶斯AR(p)模型 251
12.2.2 MCMC法与Gibbs抽样 252
12.2.3应用案例 252
思考与练习题12 255
第13章 贝叶斯可靠性统计分析基础 256
13.1可靠性统计分析概述 256
13.2成败型试验——二项分布 257
13.3连续型试验——指数分布 258
13.3.1定数截尾寿命试验 258
13.3.2定时截尾寿命试验 261
13.4电子产品可靠性的贝叶斯评估程序 263
13.5成败型产品可靠性抽样检验的贝叶斯方案 264
13.5.1生产方风险为先验风险的情况 265
13.5.2生产方风险为后验风险的情况 267
13.6指数型产品可靠性抽样检验的贝叶斯方案 269
13.7结束语 270
思考与练习题13 271
第14章 可靠性参数的E-Bayes估计法及其应用 272
14.1 E-Bayes估计法概述 272
14.2参数的E-Bayes估计法 274
14.2.1一个超参数情形 274
14.2.2两个超参数情形 274
14.3 λ的E-Bayes估计及其应用 275
14.3.1 λ的E-Bayes估计的定义 275
14.3.2 λ的E-Bayes估计 276
14.3.3 λ的多层Bayes估计 276
14.3.4 E-Bayes估计的性质 277
14.3.5应用案例 278
14.4 pi的E-Bayes估计及其应用 280
14.4.1 pi的E-Bayes估计的定义 280
14.4.2 pi的E-Bayes估计 281
14.4.3 pi的E-Bayes估计的性质 281
14.4.4模拟算例 282
14.4.5应用案例 283
14.5 R的E-Bayes估计及其应用 285
14.5.1 R的E-Bayes估计的定义 285
14.5.2 R的E-Bayes估计 286
14.5.3 R的多层Baeys估计 286
14.5.4 E-Bayes估计的性质 287
14.5.5模拟算例 288
思考与练习题14 293
第15章 无失效数据的贝叶斯可靠性分析 295
15.1无失效数据问题概述 295
15.2 λ的经典置信限和Bayes可信限 297
15.2.1 λ的经典置信上限和Bayes可信上限 297
15.2.2应用案例1 298
15.2.3应用案例2 299
15.3 λ的E-Bayes估计及其应用 300
15.3.1 λ的E-Bayes估计的定义 300
15.3.2 λ的E-Bayes估计 301
15.3.3 λ的多层Bayes估计 301
15.3.4 E-Bayes估计的性质 302
15.3.5应用案例 303
15.4 pi的E-Bayes估计及其应用——一个超参数情形 304
15.4.1 pi的E-Bayes估计的定义 304
15.4.2 pi的E-Bayes估计 305
15.4.3 pi的多层Bayes估计 306
15.4.4 pi的 E-Bayes估计的性质 306
15.4.5模拟算例 307
15.4.6应用案例 308
15.5 pi的E-Bayes估计及其应用——两个超参数情形 308
15.5.1 pi的E-Bayes估计的定义 309
15.5.2 pi的E-Bayes估计 309
15.5.3 pi的E-Bayes估计的性质 309
15.5.4应用案例 310
15.6指数分布中分布参数的加权综合E-Bayes估计 311
15.6.1 λ的E-Bayes估计 311
15.6.2引进失效信息后λ的E-Bayes估计 312
15.6.3引进失效信息后参数的加权综合估计 313
15.6.4应用案例1 314
15.6.5应用案例2 315
15.7由pi的估计求分布参数的加权综合E-Bayes估计 317
15.7.1 pi的E-Bayes估计 317
15.7.2引进失效信息后pm+1的加权综合E-Bayes估计 318
15.7.3 pm+1的加权综合E-Bayes估计 318
15.7.4引进失效信息后分布参数的加权综合E-Bayes估计 319
15.7.5应用案例 319
思考与练习题15 321
第16章 贝叶斯计算方法及有关软件 323
16.1 MCMC方法概述 323
16.2 MCMC方法简介 324
16.3 MCMC中的有关算法 326
16.3.1 Gibbs抽样 326
16.3.2 Metropolis-Hastings算法 326
16.3.3收敛性的监控 327
16.4在R中MCMC的实现 328
16.4.1 R中MCMC的实现 328
16.4.2使用R包解决MCMC计算问题 331
16.5有关软件 333
16.5.1 WinBUGS 334
16.5.2通过R调用JAGS 335
16.6 R中MCMC相关程序包 335
16.7本章附录:贝叶斯统计计算中的R包 336
思考与练习题16 338
附录 340
附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传 340
附录B: WinBUGS软件及其基本使用介绍 342
参考文献 351